Boosting social network connectivity with link revival

Yuan Tian, Qi He, Qiankun Zhao, Xingjie Liu, Wang Chien Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Online social networking platforms have become a popular channel of communications among people. However, most people can only keep in touch with a limited number of friends. This phenomenon results in a low-connectivity social network in terms of communications, which is inefficient for information propagation and social engagement. In this paper, we introduce a new recommendation service, called link revival, that suggests users to re-connect with their old friends, such that the resulted connection will improve the social network connectivity. To achieve high connectivity improvement under the dynamic social network evolvement, we propose a graph prediction-based recommendation strategy, which selects proper candidates based on the prediction of their future behaviors. We then develop an effective model that exploits non-homogeneous Poisson process and second-order self-similarity in prediction. Through comprehensive experimental studies on two real datasets (Phone Call Network and Facebook Wall-posts), we demonstrate that our proposed approach can significantly increase the social network connectivity, and that the approach outperforms other baseline solutions. The results also show that our solution is more suitable for online social networks like Facebook, partially due to the stronger long range dependency and lower communication costs in the interactions.

Original languageEnglish (US)
Title of host publicationCIKM'10 - Proceedings of the 19th International Conference on Information and Knowledge Management and Co-located Workshops
Pages589-598
Number of pages10
DOIs
StatePublished - 2010
Event19th International Conference on Information and Knowledge Management and Co-located Workshops, CIKM'10 - Toronto, ON, Canada
Duration: Oct 26 2010Oct 30 2010

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Other

Other19th International Conference on Information and Knowledge Management and Co-located Workshops, CIKM'10
Country/TerritoryCanada
CityToronto, ON
Period10/26/1010/30/10

All Science Journal Classification (ASJC) codes

  • General Business, Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'Boosting social network connectivity with link revival'. Together they form a unique fingerprint.

Cite this