Abstract
Electrical stimulation-dependent improvement in beef tenderness resulted from mechanisms other than avoidance of cold shortening in excised muscle chilled at a normal rate (10°C at 10h post-stimulation). At normal chilling rate, electrical stimulation enhanced degradation of the myofibrillar proteins, alpha actinin and troponin-T, and increased the amount of a 30 000 dalton protein, as assessed by gel electrophoresis, whereas sarcomere lengths were not different from unstimulated muscle. Under slightly accelerated chilling conditions (10°C at 5 h post stimulation), electrical stimulation prevented cold shortening but the meat was more tender than, and had the same sarcomere length as, unstimulated muscle chilled to 10°C in 10 h. Electrical stimulation did not improve the tenderness of beef chilled at a rapid rate (10°C at 2 h post stimulation), nor did it prevent cold shortening when muscles were chilled rapidly.
Original language | English (US) |
---|---|
Pages (from-to) | 163-183 |
Number of pages | 21 |
Journal | Meat Science |
Volume | 8 |
Issue number | 3 |
DOIs | |
State | Published - Apr 1983 |
All Science Journal Classification (ASJC) codes
- Food Science