Brain iron, transferrin and ferritin concentrations are altered in developing iron-deficient rats

Qiuyan Chen, James Connor, J. L. Beard

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

To study the iron, transferrin, and ferritin distribution at subcellular levels in response to acute dietary iron deficiency, we tested the hypothesis that early post-weaning iron deficiency can change iron and iron regulatory protein concentrations in rat brain. Male Sprague-Dawley rats were fed diets containing either 2 or 35 μg iron/g for 2, 3 or 4 wk starting at 21 d of age. Brain iron, transferrin and ferritin concentrations in cytosolic and microsomal fractions of either whole brain or pens and cerebellum were then determined. After 14 d of dietary iron restriction, brain iron concentrations were 50% lower in the microsomal fraction and 30% lower in cytosol compared with controls. Brain cytosolic transferrin concentration almost doubled in the same animals. Brain ferritin concentration in fractions from rats fed the iron-deficient diet for 14 d was lower than in controls, but then remained fairly constant. Absolute brain weight and total brain protein contents were unaffected by iron restriction. This study extends previous research by demonstrating that the brain responds to charities in body iron status with a change in transferrin concentration. If the dietary restriction is quite severe, this adaptation is insufficient. This study also notes that brain ferritin decreases with decreasing body iron status, though it was less responsive than nonheme iron in liver. The concept that iron enters the brain through a highly regulated endocytotic process at the blood brain barrier, that undoubtedly involves the regulation of transferrin receptors in capillary endothelial cell, is supported by our observation of elevated transferrin concentrations in brain of iron-deficient rats.

Original languageEnglish (US)
Pages (from-to)1529-1535
Number of pages7
JournalJournal of Nutrition
Volume125
Issue number6
StatePublished - Jan 1 1995

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)
  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Brain iron, transferrin and ferritin concentrations are altered in developing iron-deficient rats'. Together they form a unique fingerprint.

Cite this