Brain neurotransmitter transporter/receptor genomics and efavirenz central nervous system adverse events

David W. Haas, Yuki Bradford, Anurag Verma, Shefali S. Verma, Joseph J. Eron, Roy M. Gulick, Sharon A. Riddler, Paul E. Sax, Eric S. Daar, Gene D. Morse, Edward P. Acosta, Marylyn D. Ritchie

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Objective We characterized associations between central nervous system (CNS) adverse events and brain neurotransmitter transporter/receptor genomics among participants randomized to efavirenz-containing regimens in AIDS Clinical Trials Group studies in the USA. Participants and methods Four clinical trials randomly assigned treatment-naive participants to efavirenzcontaining regimens. Genome-wide genotype and PrediXcan were used to infer gene expression levels in tissues including 10 brain regions. Multivariable regression models stratified by race/ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, age, and sex. Combined analyses also adjusted for genetic ancestry. Results Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 genotype level was independently associated with CNS adverse events (odds ratio: 1.07; P=0.044). Predicted expression of six genes postulated to mediate efavirenz CNS side effects (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after correcting for multiple testing, the lowest P value being for PGR in hippocampus (P=0.012), nor were polymorphisms in these genes or AR and HTR2C, the lowest P value being for rs12393326 in HTR2C (P=6.7 × 10-4). As a positive control, baseline plasma bilirubin concentration was associated with predicted liver UGT1A1 expression level (P=1.9 × 10-27). Conclusion Efavirenz-related CNS adverse events were not associated with predicted neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained by brain neurotransmitter transporter/receptor genomics.

Original languageEnglish (US)
Pages (from-to)179-187
Number of pages9
JournalPharmacogenetics and Genomics
Issue number7
StatePublished - 2018

All Science Journal Classification (ASJC) codes

  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Pharmacology, Toxicology and Pharmaceutics(all)
  • Genetics(clinical)


Dive into the research topics of 'Brain neurotransmitter transporter/receptor genomics and efavirenz central nervous system adverse events'. Together they form a unique fingerprint.

Cite this