Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene

Tatsuya Tsukamoto, Toshio Ando, Hisashi Kokubun, Hitoshi Watanabe, Takahide Sato, Masahiro Masada, Eduardo Marchesi, Teh Hui Kao

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

We had previously studied the cause of breakdown of self-incompatibility in a natural population (designated U1) of Petunia axillaris subsp. axillaris (Solanaceae) identified in Uruguay. This population contained mostly self-incompatible and some self-compatible plants. We had found that an S-haplotype, S13, carried by three self-compatible individuals (U1-2, U1-16, and U1-22) was functional in the pollen, but not in the style, and that S13-RNase was not detected in the styles of these individuals. This defective haplotype was designated S13sps, with "sps" standing for "stylar-part suppression". In this work, we further investigated the molecular and genetic basis of this suppression. We isolated and sequenced cDNAs for S13-, S1- and S15-RNases, and used them as probes to show that the transcript of the S13-RNase gene was not detectable in U1-2 (S1S13sps), U1-16 (S13spsS15), or U1-22 (S13spsS13sps), but the transcript levels of the S1- and S15-RNase genes in U1-2 and U1-16, respectively, were normal. Genomic blotting analysis revealed that the S13-RNase gene was present in these three self-compatible plants. The S-genotypes obtained in budselfed and normally selfed progenies of these three plants were determined. Analysis of these S-genotypes led us to propose a model invoking a modifier locus, named MDF, to explain the suppression of the expression of the S13-RNase gene in the genetic background of the self-compatible plants carrying the S13sps-haplotype.

Original languageEnglish (US)
Pages (from-to)255-263
Number of pages9
JournalSexual Plant Reproduction
Volume15
Issue number5
DOIs
StatePublished - Jan 2003

All Science Journal Classification (ASJC) codes

  • Plant Science
  • Cell Biology

Fingerprint

Dive into the research topics of 'Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene'. Together they form a unique fingerprint.

Cite this