TY - GEN
T1 - Breaking the top-k barrier of hidden web databases?
AU - Thirumuruganathan, Saravanan
AU - Zhang, Nan
AU - Das, Gautam
PY - 2013
Y1 - 2013
N2 - A large number of web databases are only accessible through proprietary form-like interfaces which require users to query the system by entering desired values for a few attributes. A key restriction enforced by such an interface is the top-k output constraint - i.e., when there are a large number of matching tuples, only a few (top-k) of them are preferentially selected and returned by the website, often according to a proprietary ranking function. Since most web database owners set k to be a small value, the top-k output constraint prevents many interesting third-party (e.g., mashup) services from being developed over real-world web databases. In this paper we consider the novel problem of "digging deeper" into such web databases. Our main contribution is the meta-algorithm GetNext that can retrieve the next ranked tuple from the hidden web database using only the restrictive interface of a web database without any prior knowledge of its ranking function. This algorithm can then be called iteratively to retrieve as many top ranked tuples as necessary. We develop principled and efficient algorithms that are based on generating and executing multiple reformulated queries and inferring the next ranked tuple from their returned results. We provide theoretical analysis of our algorithms, as well as extensive experimental results over synthetic and real-world databases that illustrate the effectiveness of our techniques.
AB - A large number of web databases are only accessible through proprietary form-like interfaces which require users to query the system by entering desired values for a few attributes. A key restriction enforced by such an interface is the top-k output constraint - i.e., when there are a large number of matching tuples, only a few (top-k) of them are preferentially selected and returned by the website, often according to a proprietary ranking function. Since most web database owners set k to be a small value, the top-k output constraint prevents many interesting third-party (e.g., mashup) services from being developed over real-world web databases. In this paper we consider the novel problem of "digging deeper" into such web databases. Our main contribution is the meta-algorithm GetNext that can retrieve the next ranked tuple from the hidden web database using only the restrictive interface of a web database without any prior knowledge of its ranking function. This algorithm can then be called iteratively to retrieve as many top ranked tuples as necessary. We develop principled and efficient algorithms that are based on generating and executing multiple reformulated queries and inferring the next ranked tuple from their returned results. We provide theoretical analysis of our algorithms, as well as extensive experimental results over synthetic and real-world databases that illustrate the effectiveness of our techniques.
UR - http://www.scopus.com/inward/record.url?scp=84881328063&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881328063&partnerID=8YFLogxK
U2 - 10.1109/ICDE.2013.6544896
DO - 10.1109/ICDE.2013.6544896
M3 - Conference contribution
AN - SCOPUS:84881328063
SN - 9781467349086
T3 - Proceedings - International Conference on Data Engineering
SP - 1045
EP - 1056
BT - ICDE 2013 - 29th International Conference on Data Engineering
T2 - 29th International Conference on Data Engineering, ICDE 2013
Y2 - 8 April 2013 through 11 April 2013
ER -