Bridging the gap between theory and practice in influence maximization: Raising awareness about HIV among homeless youth

Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock, Amanda Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind Tambe, Darlene Woo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations


This paper reports on results obtained by deploying HEALER and DOSIM (two AI agents for social influence maximization) in the real-world, which assist service providers in maximizing HIV awareness in real-world homeless-youth social networks. These agents recommend key”seed” nodes in social networks, i.e., homeless youth who would maximize HIV awareness in their real-world social network. While prior research on these agents published promising simulation results from the lab, the usability of these AI agents in the real-world was unknown. This paper presents results from three real-world pilot studies involving 173 homeless youth across two different homeless shelters in Los Angeles. The results from these pilot studies illustrate that HEALER and DOSIM outperform the current modus operandi of service providers by ~160% in terms of information spread about HIV among homeless youth.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Number of pages5
ISBN (Electronic)9780999241127
StatePublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: Jul 13 2018Jul 19 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823


Other27th International Joint Conference on Artificial Intelligence, IJCAI 2018

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Cite this