BTCI: A new framework for identifying congestion cascades using bus trajectory data

Meng Fen Chiang, Ee Peng Lim, Wang Chien Lee, Agus Trisnajaya Kwee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

The knowledge of traffic health status is essential to the general public and urban traffic management. To identify congestion cascades, an important phenomenon of traffic health, we propose a Bus Trajectory based Congestion Identification (BTCI) framework that explores the anomalous traffic health status and structure properties of congestion cascades using bus trajectory data. BTCI consists of two main steps, congested segment extraction and congestion cascades identification. The former constructs path speed models from historical vehicle transitions and design a non-parametric Kernel Density Estimation (KDE) function to derive a measure of congestion score. The latter aggregates congested segments (i.e., those with high congestion scores) into traffic congestion cascades by unifying both attribute coherence and spatiooral closeness of congested segments within a cascade. Extensive evaluations on 11.8 million bus trajectory data show that (1) BTCI can effectively identify congestion cascades, (2) the proposed congestion score is effective in extracting congested segments, (3) the proposed unified approach significantly outperforms alternative approaches in terms of extended precision, and (4) the identified congestion cascades are realistic, matching well with the traffic news and highly correlated with vehicle speed bands.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
EditorsJian-Yun Nie, Zoran Obradovic, Toyotaro Suzumura, Rumi Ghosh, Raghunath Nambiar, Chonggang Wang, Hui Zang, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Xiaohua Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian Tang, Masashi Toyoda
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1133-1142
Number of pages10
ISBN (Electronic)9781538627143
DOIs
StatePublished - Jul 1 2017
Event5th IEEE International Conference on Big Data, Big Data 2017 - Boston, United States
Duration: Dec 11 2017Dec 14 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
Volume2018-January

Other

Other5th IEEE International Conference on Big Data, Big Data 2017
Country/TerritoryUnited States
CityBoston
Period12/11/1712/14/17

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Information Systems and Management
  • Control and Optimization

Fingerprint

Dive into the research topics of 'BTCI: A new framework for identifying congestion cascades using bus trajectory data'. Together they form a unique fingerprint.

Cite this