Bumble bees in landscapes with abundant floral resources have lower pathogen loads

Darin J. McNeil, Elyse McCormick, Ashley C. Heimann, Melanie Kammerer, Margaret R. Douglas, Sarah C. Goslee, Christina M. Grozinger, Heather M. Hines

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.

Original languageEnglish (US)
Article number22306
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Bumble bees in landscapes with abundant floral resources have lower pathogen loads'. Together they form a unique fingerprint.

Cite this