TY - JOUR
T1 - Bumble bees in landscapes with abundant floral resources have lower pathogen loads
AU - McNeil, Darin J.
AU - McCormick, Elyse
AU - Heimann, Ashley C.
AU - Kammerer, Melanie
AU - Douglas, Margaret R.
AU - Goslee, Sarah C.
AU - Grozinger, Christina M.
AU - Hines, Heather M.
N1 - Funding Information:
This work was supported by a grant to HMH and CMG from the Foundation for Food and Agricultural Research (FFAR #549032). We are grateful to Jack Hill and the Pennsylvania Department of Conservation and Natural Resources (PA-DCNR) for access to state parks for bumble bee sampling (permit #2019-75). We would like to thank Karen Roccasecca for providing data on Pennsylvania apiary locations. We also thank Maggie Weber, Mona Kazour, Briana Ezray, Sophie Tessier, Li Tian, and Sean Bresnahan for assistance with field data collection, Briana Ezray for assistance on pathogen protocols, and Margarita López-Uribe for helpful discussions on project design. Finally, we are also very grateful for input from Dr. James Cresswell and an anonymous reviewer who both provided excellent reviews of our manuscript.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.
AB - The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.
UR - http://www.scopus.com/inward/record.url?scp=85097782846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097782846&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-78119-2
DO - 10.1038/s41598-020-78119-2
M3 - Article
C2 - 33339846
AN - SCOPUS:85097782846
SN - 2045-2322
VL - 10
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 22306
ER -