TY - JOUR
T1 - Ca2-mediated activation of the skeletal-muscle ryanodine receptor ion channel
AU - Xu, Le
AU - Chirasani, Venkat R.
AU - Carter, Jordan S.
AU - Pasek, Daniel A.
AU - Dokholyan, Nikolay V.
AU - Yamaguchi, Naohiro
AU - Meissner, Gerhard
N1 - Publisher Copyright:
© 2018 Xu et al.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - Cryo-electron micrograph studies recently have identified a Ca2-binding site in the 2,200-kDa ryanodine receptor ion channel (RyR1) in skeletal muscle. To clarify the role of this site in regulating RyR1 activity, here we applied mutational, electro-physiological, and computational methods. Three amino acid residues that interact directly with Ca2 were replaced, and these RyR1 variants were expressed in HEK293 cells. Single-site RyR1-E3893Q, -E3893V, -E3967Q, -E3967V, and -T5001A variants and double-site RyR1-E3893Q/E3967Q and -E3893V/ E3967V variants displayed cellular Ca2 release in response to caffeine, which indicated that they retained functionality as caffeine-sensitive, Ca2-conducting channels in the HEK293 cell system. Using [3H]ryanodine binding and single-channel measurements of membrane isolates, we found that single- and double-site RyR1-E3893 and -E3967 variants are not activated by Ca2. We also noted that RyR1-E3893Q/E3967Q and -E3893V/ E3967V variants maintain caffeine- and ATP-induced activation and that RyR1-E3893Q/E3967Q is inhibited by Mg2 and elevated Ca2. RyR1-T5001A exhibited decreased Ca2 sensitivity compared with WT-RyR1 in single-channel measurements. Computational methods suggested that electrostatic interactions between Ca2 and negatively charged glutamate residues have a critical role in transducing the functional effects of Ca2 on RyR1. We conclude that the removal of negative charges in the recently identified RyR1 Ca2-binding site impairs RyR1 activation by physiological Ca2 concentrations and results in loss of binding to Ca2 or reduced Ca2 affinity of the binding site.
AB - Cryo-electron micrograph studies recently have identified a Ca2-binding site in the 2,200-kDa ryanodine receptor ion channel (RyR1) in skeletal muscle. To clarify the role of this site in regulating RyR1 activity, here we applied mutational, electro-physiological, and computational methods. Three amino acid residues that interact directly with Ca2 were replaced, and these RyR1 variants were expressed in HEK293 cells. Single-site RyR1-E3893Q, -E3893V, -E3967Q, -E3967V, and -T5001A variants and double-site RyR1-E3893Q/E3967Q and -E3893V/ E3967V variants displayed cellular Ca2 release in response to caffeine, which indicated that they retained functionality as caffeine-sensitive, Ca2-conducting channels in the HEK293 cell system. Using [3H]ryanodine binding and single-channel measurements of membrane isolates, we found that single- and double-site RyR1-E3893 and -E3967 variants are not activated by Ca2. We also noted that RyR1-E3893Q/E3967Q and -E3893V/ E3967V variants maintain caffeine- and ATP-induced activation and that RyR1-E3893Q/E3967Q is inhibited by Mg2 and elevated Ca2. RyR1-T5001A exhibited decreased Ca2 sensitivity compared with WT-RyR1 in single-channel measurements. Computational methods suggested that electrostatic interactions between Ca2 and negatively charged glutamate residues have a critical role in transducing the functional effects of Ca2 on RyR1. We conclude that the removal of negative charges in the recently identified RyR1 Ca2-binding site impairs RyR1 activation by physiological Ca2 concentrations and results in loss of binding to Ca2 or reduced Ca2 affinity of the binding site.
UR - http://www.scopus.com/inward/record.url?scp=85058566165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058566165&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA118.004453
DO - 10.1074/jbc.RA118.004453
M3 - Article
C2 - 30341173
AN - SCOPUS:85058566165
SN - 0021-9258
VL - 293
SP - 19501
EP - 19509
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -