Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)

Hojong Kim, Dane A. Boysen, Takanari Ouchi, Donald R. Sadoway

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

Calcium is an attractive electrode material for use in grid-scale electrochemical energy storage due to its low electronegativity, earth abundance, and low cost. The feasibility of combining a liquid Ca-Bi positive electrode with a molten salt electrolyte for use in liquid metal batteries at 500-700 C was investigated. Exhibiting excellent reversibility up to current densities of 200 mA cm-2, the calcium-bismuth liquid alloy system is a promising positive electrode candidate for liquid metal batteries. The measurement of low self-discharge current suggests that the solubility of calcium metal in molten salt electrolytes can be sufficiently suppressed to yield high coulombic efficiencies >98%. The mechanisms giving rise to Ca-Bi electrode overpotentials were investigated in terms of associated charge transfer and mass transport resistances. The formation of low density Ca 11Bi10 intermetallics at the electrode-electrolyte interface limited the calcium deposition rate capability of the electrodes; however, the co-deposition of barium into bismuth from barium-containing molten salts suppressed Ca-Bi intermetallic formation thereby improving the discharge capacity.

Original languageEnglish (US)
Pages (from-to)239-248
Number of pages10
JournalJournal of Power Sources
Volume241
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)'. Together they form a unique fingerprint.

Cite this