Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust

Michael A. Antonelli, Jillian Kendrick, Chris Yakymchuk, Martin Guitreau, Tushar Mittal, Frédéric Moynier

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Continents are unique to Earth and played a role in coevolution of the atmosphere, hydrosphere, and biosphere. Debate exists, however, regarding continent formation and the onset of subduction-driven plate tectonics. We present Ca isotope and trace-element data from modern and ancient (4.0 to 2.8 Ga) granitoids and phase equilibrium models indicating that Ca isotope fractionations are dominantly controlled by geothermal gradients. The results require gradients of 500–750 °C/GPa, as found in modern (hot) subduction-zones and consistent with the operation of subduction throughout the Archaean. Two granitoids from the Nuvvuagittuq Supracrustal Belt, Canada, however, cannot be explained through magmatic processes. Their isotopic signatures were likely inherited from carbonate sediments. These samples (> 3.8 Ga) predate the oldest known carbonates preserved in the rock record and confirm that carbonate precipitation in Eoarchaean oceans provided an important sink for atmospheric CO2. Our results suggest that subduction-driven plate tectonic processes started prior to ~3.8 Ga.

Original languageEnglish (US)
Article number2534
JournalNature communications
Issue number1
StatePublished - Dec 1 2021

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust'. Together they form a unique fingerprint.

Cite this