Calculations of solid-state 43Ca NMR parameters: A comparison of periodic and cluster approaches and an evaluation of DFT functionals

Sean T. Holmes, Shi Bai, Robbie J. Iuliucci, Karl T. Mueller, Cecil Dybowski

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We present a computational study of magnetic-shielding and quadrupolar-coupling tensors of 43Ca sites in crystalline solids. A comparison between periodic and cluster-based approaches for modeling solid-state interactions demonstrates that cluster-based approaches are suitable for predicting 43Ca NMR parameters. Several model chemistries, including Hartree–Fock theory and 17 DFT approximations (SVWN, CA-PZ, PBE, PBE0, PW91, B3PW91, rPBE, PBEsol, WC, PKZB, BMK, M06-L, M06, M06-2X, M06-HF, TPSS, and TPSSh), are evaluated for the prediction of 43Ca NMR parameters. Convergence of NMR parameters with respect to basis sets of the form cc-pVXZ (X = D, T, Q) is also evaluated. All DFT methods lead to substantial, and frequently systematic, overestimations of experimental chemical shifts. Hartree–Fock calculations outperform all DFT methods for the prediction of 43Ca chemical-shift tensors.

Original languageEnglish (US)
Pages (from-to)949-956
Number of pages8
JournalJournal of Computational Chemistry
Volume38
Issue number13
DOIs
StatePublished - May 15 2017

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Calculations of solid-state 43Ca NMR parameters: A comparison of periodic and cluster approaches and an evaluation of DFT functionals'. Together they form a unique fingerprint.

Cite this