TY - JOUR
T1 - Calibration of Aerogel Tiles for the HELIX-RICH Detector
AU - HELIX Collaboration
AU - O’Brien, Stephan
AU - Allison, P.
AU - Beatty, J. J.
AU - Beaufore, L.
AU - Chen, Y.
AU - Coutu, S.
AU - Ellingwood, E.
AU - Gebhard, M.
AU - Green, N.
AU - Hanna, D.
AU - Kunkler, B.
AU - Mognet, I.
AU - Mbarek, R.
AU - McBride, K.
AU - Michaels, K.
AU - Müller, D.
AU - Musser, J.
AU - Nutter, S.
AU - Park, N.
AU - Rosin, T.
AU - Schreyer, E.
AU - Tarlé, G.
AU - Tabata, M.
AU - Tomasch, A.
AU - Visser, G.
AU - Wakely, S. P.
AU - Werner, T.
AU - Wisher, I.
AU - Yu, M.
N1 - Publisher Copyright:
© Copyright owned by the author(s).
PY - 2022/3/18
Y1 - 2022/3/18
N2 - HELIX (High Energy Light Isotope eXperiment) is a balloon-borne instrument designed to measure the chemical and isotopic abundances of light cosmic-ray nuclei. In particular, HELIX is optimized to measure 10Be and 9Be in the range 0.2 GeV/n to beyond 3 GeV/n. To achieve this, HELIX utilizes a 1 Tesla superconducting magnet with a high-resolution gas drift tracking system, time-of-flight detector, and a ring-imaging Cherenkov (RICH) detector. The RICH detector consists of aerogel tile radiators (refractive index 1.15) with a silicon photomultiplier detector plane. To adequately discriminate between 10Be and 9Be isotopes, the refractive index of the aerogel tiles must be known to a precision of 0.1%. In this contribution, detailed mapping of the refractive index across the aerogel tiles is presented and the methodology used to obtain these measurements is discussed.
AB - HELIX (High Energy Light Isotope eXperiment) is a balloon-borne instrument designed to measure the chemical and isotopic abundances of light cosmic-ray nuclei. In particular, HELIX is optimized to measure 10Be and 9Be in the range 0.2 GeV/n to beyond 3 GeV/n. To achieve this, HELIX utilizes a 1 Tesla superconducting magnet with a high-resolution gas drift tracking system, time-of-flight detector, and a ring-imaging Cherenkov (RICH) detector. The RICH detector consists of aerogel tile radiators (refractive index 1.15) with a silicon photomultiplier detector plane. To adequately discriminate between 10Be and 9Be isotopes, the refractive index of the aerogel tiles must be known to a precision of 0.1%. In this contribution, detailed mapping of the refractive index across the aerogel tiles is presented and the methodology used to obtain these measurements is discussed.
UR - http://www.scopus.com/inward/record.url?scp=85145258134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145258134&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85145258134
SN - 1824-8039
VL - 395
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 090
T2 - 37th International Cosmic Ray Conference, ICRC 2021
Y2 - 12 July 2021 through 23 July 2021
ER -