Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Background: Cannabigerol (CBG) is a non-psychoactive phytocannabinoid produced by the plant Cannabis sativa with affinity to various receptors involved in nociception. As a result, CBG is marketed as an over-the-counter treatment for many forms of pain. However, there is very little research-based evidence for the efficacy of CBG as an anti-nociceptive agent. Methods: To begin to fill this knowledge gap, we assessed the anti-nociceptive effects of CBG in C57BL/6 mice using three different models of pain; cisplatin-induced peripheral neuropathy, the formalin test, and the tail-flick assay. Results: Using the von Frey test, we found that CBG-attenuated mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy in both male and female mice. Additionally, we observed that this CBG-induced reduction in mechanical hypersensitivity was attenuated by the α2-adrenergic receptor antagonist atipamezole (3 mg/kg, i.p.) and the CB1R antagonist, AM4113 (3 mg/kg, i.p.), and blocked by the CB2R antagonist/inverse agonist, SR144528 (10 mg/kg, i.p.). We found that the TRPV1 antagonist, SB705498 (20 mg/kg, i.p.) was unable to prevent CBG actions. Furthermore, we show that CBG:CBD oil (10 mg/kg, i.p.) was more effective than pure CBG (10 mg/kg) at reducing mechanical hypersensitivity in neuropathic mice. Lastly, we show that pure CBG and CBG:CBD oil were ineffective at reducing nociception in other models of pain, including the formalin and tail flick assays. Conclusions: Our findings support the role of CBG in alleviating mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy, but highlight that these effects may be limited to specific types of pain. Significance: There are few effective treatments for neuropathic pain and neuropathic pain is projected to increase with the aging population. We demonstrate that CBG (cannabigerol) and CBG:CBD oil attenuate neuropathy-induced mechanical hypersensitivity mice. Second, we identify receptor targets that mediate CBG-induced reduction in mechanical hypersensitivity in neuropathic mice. Third, we demonstrate that an acute injection of CBG is anti-nociceptive specifically for neuropathic pain rather than other forms of pain, including persistent pain and thermal pain.

Original languageEnglish (US)
Pages (from-to)1950-1966
Number of pages17
JournalEuropean Journal of Pain
Volume26
Issue number9
DOIs
StatePublished - Oct 2022

All Science Journal Classification (ASJC) codes

  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy'. Together they form a unique fingerprint.

Cite this