TY - JOUR
T1 - Carbon-deficient Red Giants
AU - Bond, Howard E.
N1 - Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved..
PY - 2019/12/10
Y1 - 2019/12/10
N2 - Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called "weak G-band" or "weak CH" stars. Their atmospheric compositions show depleted carbon, a low isotopic ratio, and an overabundance of nitrogen, indicating that the material at the surface has undergone CN-cycle hydrogen burning. I present Strömgren uvby photometry of nearly all known CDRGs. Barium stars, having an enhanced carbon abundance, exhibit the "Bond-Neff effect" - a broad depression in their energy distributions at ∼4000 Å, recently confirmed to be due to the CH molecule. This gives Ba ii stars unusually low Strömgren c 1 photometric indices. I show that CDRGs, lacking CH absorption, exhibit an "anti-Bond-Neff effect" - higher c 1 indices than normal red giants. Using precise parallaxes from Gaia DR2, I plot CDRGs in the color-magnitude diagram (CMD) and compare them with theoretical evolution tracks. Most CDRGs lie in a fairly tight clump in the CMD, indicating initial masses in the range ∼2-3.5, M⊙, if they have evolved as single stars. It is unclear whether they are stars that have just reached the base of the red-giant branch and the first dredge-up of CN-processed material, or are more highly evolved helium-burning stars in the red-giant clump. About 10% of CDRGs have higher masses of ∼4-4.5, M&odot:, and exhibit unusually high rotational velocities. I show that CDRGs lie at systematically larger distances from the Galactic plane than normal giants, possibly indicating a role of binary mass transfer and mergers. CDRGs continue to present a major puzzle for our understanding of stellar evolution.
AB - Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called "weak G-band" or "weak CH" stars. Their atmospheric compositions show depleted carbon, a low isotopic ratio, and an overabundance of nitrogen, indicating that the material at the surface has undergone CN-cycle hydrogen burning. I present Strömgren uvby photometry of nearly all known CDRGs. Barium stars, having an enhanced carbon abundance, exhibit the "Bond-Neff effect" - a broad depression in their energy distributions at ∼4000 Å, recently confirmed to be due to the CH molecule. This gives Ba ii stars unusually low Strömgren c 1 photometric indices. I show that CDRGs, lacking CH absorption, exhibit an "anti-Bond-Neff effect" - higher c 1 indices than normal red giants. Using precise parallaxes from Gaia DR2, I plot CDRGs in the color-magnitude diagram (CMD) and compare them with theoretical evolution tracks. Most CDRGs lie in a fairly tight clump in the CMD, indicating initial masses in the range ∼2-3.5, M⊙, if they have evolved as single stars. It is unclear whether they are stars that have just reached the base of the red-giant branch and the first dredge-up of CN-processed material, or are more highly evolved helium-burning stars in the red-giant clump. About 10% of CDRGs have higher masses of ∼4-4.5, M&odot:, and exhibit unusually high rotational velocities. I show that CDRGs lie at systematically larger distances from the Galactic plane than normal giants, possibly indicating a role of binary mass transfer and mergers. CDRGs continue to present a major puzzle for our understanding of stellar evolution.
UR - http://www.scopus.com/inward/record.url?scp=85077321276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077321276&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab4e13
DO - 10.3847/1538-4357/ab4e13
M3 - Article
AN - SCOPUS:85077321276
SN - 0004-637X
VL - 887
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 12
ER -