Abstract
As the field of nerve tissue engineering advances, new biomaterials and structures are required to improve the regeneration of damaged nerves. Carbon nanostructures have been recognized as potential candidates to develop neural prostheses due to their one-dimensional nanostructures and similar nanoscale dimensions to neuritis as well as their unique electrical and mechanical properties when being used as a scaffold. This review addresses the promising application of carbon nanostructures in the repair of injured nerves. As a new viewpoint, the possibility of utilizing carbon nanostructures to repair a long gap in a severed nerve will be discussed as well.
Original language | English (US) |
---|---|
Pages (from-to) | 6075-6090 |
Number of pages | 16 |
Journal | Ceramics International |
Volume | 38 |
Issue number | 8 |
DOIs | |
State | Published - Dec 2012 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry