Carbon storage by urban tree cultivars, in roots and above-ground

Andra D. Johnson, Henry D. Gerhold

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Urban trees can favorably affect factors underlying global warming by storing carbon and by reducing energy needs for cooling and heating buildings. To estimate carbon stored in roots and above-ground portions of trees, data was collected consisting of whole tree sampling of Amelanchier, Malus, Pyrus, and Syringa cultivars. Roots were excavated using an Air-Spade. Regression analysis resulted in two equations for predicting total carbon storage based on height and diameter of trees up to 20 cm dbh: Y = 0.05836 (dbh2) for root carbon storage, and Y = 0.0305 (dbh2 × h)0.9499 for above-ground carbon storage, explaining 97% and 96% of the variation, respectively. Average carbon stored in roots of various cultivars ranged from 0.3 to 1.0 kg for smaller trees, those 3.8 to 6.4 cm dbh, to more than 10.4 kg for trees 14.0 cm to 19.7 cm dbh. Average total carbon stored by cultivars ranged from 1.7 to 3.6 kg for trees less than 6.4 cm dbh to 54.5 kg for trees larger than 14.0 cm. The data from these equations apply mainly to trees in nurseries and recently transplanted trees. Comparisons showed that above-ground estimates from previous studies using a sampling technique overestimated values obtained from actual above-ground weights.

Original languageEnglish (US)
Pages (from-to)65-72
Number of pages8
JournalUrban Forestry and Urban Greening
Volume2
Issue number2
DOIs
StatePublished - 2003

All Science Journal Classification (ASJC) codes

  • Forestry
  • Ecology
  • Soil Science

Fingerprint

Dive into the research topics of 'Carbon storage by urban tree cultivars, in roots and above-ground'. Together they form a unique fingerprint.

Cite this