TY - JOUR
T1 - Carboxylmethylation of calmodulin inhibits calmodulin-dependent phosphorylation in rat brain membranes and cytosol
AU - Billingsley, M. L.
AU - Velletri, P. A.
AU - Roth, R. H.
AU - DeLorenzo, R. J.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1983
Y1 - 1983
N2 - Protein carboxylmethyltransferase, using S-adenosylmethionine (AdoMet) as a methyl donor, forms baselabile carboxylmethylesters on acidic amino acids of various protein substrates. Calmodulin (CaM), an acidic protein, is an excellent substrate for protein carboxylmethyltransferase. Using purified rat brain protein carboxylmethyltransferase, we have investigated the effects of carboxylmethylation of CaM on its subsequent ability to stimulate Ca+2-CaM-dependent phosphorylations in rat brain cytosol and membrane preparations. Incubation of CaM, purified protein carboxylmethyltransferase, and AdoMet resulted in the time- and temperature-dependent formation of carboxylmethylesters, with CaM showing greater methylation than other protein substrates. Acidic gel electrophoresis of CaM after incubation with protein carboxylmethyltransferase and AdoMet revealed a single radioactive band that co-migrated with native CaM. The functional consequences of carboxylmethylation were investigated by preincubating CaM with protein carboxylmethyltransferase, followed by determination of Ca+2-CaM-stimulated phosphorylation in rat brain membranes depleted of CaM. Carboxylmethylated CaM was less able to stimulate Ca+2-CaM-dependent phosphorylation in membrane proteins. This inhibition of Ca+2-CaM-dependent phosphorylation was reversed by including S-adenosylhomocysteine, an inhibitor of protein carboxylmethyltransferase, in the preincubation with protein carboxylmethyltransferase and AdoMet. Similar results were obtained by preincubating rat brain cytosol with purified protein carboxylmethyltransferase and AdoMet. In this preparation, Ca2+-stimulated phosphorylations were inhibited, with maximal inhibition noted at 100 μM AdoMet. These results suggest that carboxylmethylation of CaM may provide an important biochemical mechanism for regulation of Ca2+-CaM-dependent reactions in nervous tissue.
AB - Protein carboxylmethyltransferase, using S-adenosylmethionine (AdoMet) as a methyl donor, forms baselabile carboxylmethylesters on acidic amino acids of various protein substrates. Calmodulin (CaM), an acidic protein, is an excellent substrate for protein carboxylmethyltransferase. Using purified rat brain protein carboxylmethyltransferase, we have investigated the effects of carboxylmethylation of CaM on its subsequent ability to stimulate Ca+2-CaM-dependent phosphorylations in rat brain cytosol and membrane preparations. Incubation of CaM, purified protein carboxylmethyltransferase, and AdoMet resulted in the time- and temperature-dependent formation of carboxylmethylesters, with CaM showing greater methylation than other protein substrates. Acidic gel electrophoresis of CaM after incubation with protein carboxylmethyltransferase and AdoMet revealed a single radioactive band that co-migrated with native CaM. The functional consequences of carboxylmethylation were investigated by preincubating CaM with protein carboxylmethyltransferase, followed by determination of Ca+2-CaM-stimulated phosphorylation in rat brain membranes depleted of CaM. Carboxylmethylated CaM was less able to stimulate Ca+2-CaM-dependent phosphorylation in membrane proteins. This inhibition of Ca+2-CaM-dependent phosphorylation was reversed by including S-adenosylhomocysteine, an inhibitor of protein carboxylmethyltransferase, in the preincubation with protein carboxylmethyltransferase and AdoMet. Similar results were obtained by preincubating rat brain cytosol with purified protein carboxylmethyltransferase and AdoMet. In this preparation, Ca2+-stimulated phosphorylations were inhibited, with maximal inhibition noted at 100 μM AdoMet. These results suggest that carboxylmethylation of CaM may provide an important biochemical mechanism for regulation of Ca2+-CaM-dependent reactions in nervous tissue.
UR - http://www.scopus.com/inward/record.url?scp=0020633365&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020633365&partnerID=8YFLogxK
M3 - Article
C2 - 6853519
AN - SCOPUS:0020633365
SN - 0021-9258
VL - 258
SP - 5352
EP - 5357
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 9
ER -