TY - JOUR
T1 - Carotenoid biomarkers in Namibian shelf sediments
T2 - Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System
AU - Ma, Jian
AU - French, Katherine L.
AU - Cui, Xingqian
AU - Bryant, Donald A.
AU - Summons, Roger E.
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/7/20
Y1 - 2021/7/20
N2 - Aromatic carotenoid-derived hydrocarbon biomarkers are ubiquitous in ancient sediments and oils and are typically attributed to anoxygenic phototrophic green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). These biomarkers serve as proxies for the environmental growth requirements of PSB and GSB, namely euxinic waters extending into the photic zone. Until now, prevailing models for environments supporting anoxygenic phototrophs include microbial mats, restricted basins and fjords with deep chemoclines, and meromictic lakes with shallow chemoclines. However, carotenoids have been reported in ancient open marine settings for which there currently are no known modern analogs that host GSB and PSB. The Benguela Upwelling System offshore Namibia, known for exceptionally high primary productivity, is prone to recurrent toxic gas eruptions whereupon hydrogen sulfide emanates from sediments into the overlying water column. These events, visible in satellite imagery as water masses clouded with elemental sulfur, suggest that the Benguela Upwelling System may be capable of supporting GSB and PSB. Here, we compare distributions of biomarkers in the free and sulfur-bound organic matter of Namibian shelf sediments. Numerous compounds—including acyclic isoprenoids, steranes, triterpanes, and carotenoids—were released from the polar lipid fractions upon Raney nickel desulfurization. The prevalence of isorenieratane and β-isorenieratane in sampling stations along the shelf verified anoxygenic photosynthesis by low-light-adapted, brown-colored GSB in this open marine setting. Renierapurpurane was also present in the sulfur-bound carotenoids and was typically accompanied by lower abundances of renieratane and β-renierapurpurane, thereby identifying cyanobacteria as an additional aromatic carotenoid source.
AB - Aromatic carotenoid-derived hydrocarbon biomarkers are ubiquitous in ancient sediments and oils and are typically attributed to anoxygenic phototrophic green sulfur bacteria (GSB) and purple sulfur bacteria (PSB). These biomarkers serve as proxies for the environmental growth requirements of PSB and GSB, namely euxinic waters extending into the photic zone. Until now, prevailing models for environments supporting anoxygenic phototrophs include microbial mats, restricted basins and fjords with deep chemoclines, and meromictic lakes with shallow chemoclines. However, carotenoids have been reported in ancient open marine settings for which there currently are no known modern analogs that host GSB and PSB. The Benguela Upwelling System offshore Namibia, known for exceptionally high primary productivity, is prone to recurrent toxic gas eruptions whereupon hydrogen sulfide emanates from sediments into the overlying water column. These events, visible in satellite imagery as water masses clouded with elemental sulfur, suggest that the Benguela Upwelling System may be capable of supporting GSB and PSB. Here, we compare distributions of biomarkers in the free and sulfur-bound organic matter of Namibian shelf sediments. Numerous compounds—including acyclic isoprenoids, steranes, triterpanes, and carotenoids—were released from the polar lipid fractions upon Raney nickel desulfurization. The prevalence of isorenieratane and β-isorenieratane in sampling stations along the shelf verified anoxygenic photosynthesis by low-light-adapted, brown-colored GSB in this open marine setting. Renierapurpurane was also present in the sulfur-bound carotenoids and was typically accompanied by lower abundances of renieratane and β-renierapurpurane, thereby identifying cyanobacteria as an additional aromatic carotenoid source.
UR - http://www.scopus.com/inward/record.url?scp=85110290143&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110290143&partnerID=8YFLogxK
U2 - 10.1073/pnas.2106040118
DO - 10.1073/pnas.2106040118
M3 - Article
C2 - 34272281
AN - SCOPUS:85110290143
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 29
M1 - e2106040118
ER -