Cartilage segmentation in high-resolution 3d micro-ct images via uncertainty-guided self-training with very sparse annotation

Hao Zheng, Susan M. Motch Perrine, M. Kathleen Pitirri, Kazuhiko Kawasaki, Chaoli Wang, Joan T. Richtsmeier, Danny Z. Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Scopus citations

Abstract

Craniofacial syndromes often involve skeletal defects of the head. Studying the development of the chondrocranium (the part of the endoskeleton that protects the brain and other sense organs) is crucial to understanding genotype-phenotype relationships and early detection of skeletal malformation. Our goal is to segment craniofacial cartilages in 3D micro-CT images of embryonic mice stained with phosphotungstic acid. However, due to high image resolution, complex object structures, and low contrast, delineating fine-grained structures in these images is very challenging, even manually. Specifically, only experts can differentiate cartilages, and it is unrealistic to manually label whole volumes for deep learning model training. We propose a new framework to progressively segment cartilages in high-resolution 3D micro-CT images using extremely sparse annotation (e.g., annotating only a few selected slices in a volume). Our model consists of a lightweight fully convolutional network (FCN) to accelerate the training speed and generate pseudo labels (PLs) for unlabeled slices. Meanwhile, we take into account the reliability of PLs using a bootstrap ensemble based uncertainty quantification method. Further, our framework gradually learns from the PLs with the guidance of the uncertainty estimation via self-training. Experiments show that our method achieves high segmentation accuracy compared to prior arts and obtains performance gains by iterative self-training.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages802-812
Number of pages11
ISBN (Print)9783030597092
DOIs
StatePublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: Oct 4 2020Oct 8 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12261 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period10/4/2010/8/20

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Cartilage segmentation in high-resolution 3d micro-ct images via uncertainty-guided self-training with very sparse annotation'. Together they form a unique fingerprint.

Cite this