TY - JOUR
T1 - Caspase-3 and -6 expression and enzyme activity in hen granulosa cells
AU - Johnson, A. L.
AU - Bridgham, J. T.
PY - 2000
Y1 - 2000
N2 - We have cloned and sequenced cDNAs corresponding to the complete coding regions of the chicken homologues to mammalian caspase-3 and caspase-6. Both caspases are included among members of the cysteine protease (caspase) family that are most closely identified with mediating apoptosis. The deduced amino acid sequences for chicken caspase-3 and -6 show 65% and 68% identity with the respective human sequences, with complete conservation found within the QACRG active peptide region. Both caspase-3 and -6 are widely expressed within various tissues from the hen. Within the ovary, levels of caspase-3 and caspase-6 mRNA and protein do not change significantly in theca tissue during follicle development. On the other hand, procaspase-3 and -6 protein levels are elevated by 2- to 5-fold in preovulatory, compared to prehierarchal (6- to 8-mm diameter), follicle granulosa cells. Nevertheless, the function of this family of cell death-inducing proteins requires activation of the proenzyme caspase, which occurs after cleavage at predictable sites within the N-terminal domain. Accordingly, it was determined that okadaic acid, a pharmacologic inducer of apoptotic cell death in cultured apoptosis-resistant, preovulatory follicle granulosa cells, induced both caspase-3- and caspase-6-like activity within 8-16 h of treatment. By comparison, spontaneous apoptotic cell death that occurs in apoptosis-sensitive, prehierarchal follicle granulosa cells after short-term suspension culture is accompanied by a more rapid increase (within 2 h) in both caspase-3- and -6-like activity. Treatment with 8-bromo-cAMP, which has previously been shown to attenuate, or at least slow, the onset of apoptosis in prehierarchal follicle granulosa cells, mitigates this suspension culture- induced increase in caspase activity. While the present results provide further support for the relationship between caspase activation and apoptotic cell death in hen granulosa cells, the molecular ordering of enzymatic events and the caspase-specific substrates remain to be elucidated.
AB - We have cloned and sequenced cDNAs corresponding to the complete coding regions of the chicken homologues to mammalian caspase-3 and caspase-6. Both caspases are included among members of the cysteine protease (caspase) family that are most closely identified with mediating apoptosis. The deduced amino acid sequences for chicken caspase-3 and -6 show 65% and 68% identity with the respective human sequences, with complete conservation found within the QACRG active peptide region. Both caspase-3 and -6 are widely expressed within various tissues from the hen. Within the ovary, levels of caspase-3 and caspase-6 mRNA and protein do not change significantly in theca tissue during follicle development. On the other hand, procaspase-3 and -6 protein levels are elevated by 2- to 5-fold in preovulatory, compared to prehierarchal (6- to 8-mm diameter), follicle granulosa cells. Nevertheless, the function of this family of cell death-inducing proteins requires activation of the proenzyme caspase, which occurs after cleavage at predictable sites within the N-terminal domain. Accordingly, it was determined that okadaic acid, a pharmacologic inducer of apoptotic cell death in cultured apoptosis-resistant, preovulatory follicle granulosa cells, induced both caspase-3- and caspase-6-like activity within 8-16 h of treatment. By comparison, spontaneous apoptotic cell death that occurs in apoptosis-sensitive, prehierarchal follicle granulosa cells after short-term suspension culture is accompanied by a more rapid increase (within 2 h) in both caspase-3- and -6-like activity. Treatment with 8-bromo-cAMP, which has previously been shown to attenuate, or at least slow, the onset of apoptosis in prehierarchal follicle granulosa cells, mitigates this suspension culture- induced increase in caspase activity. While the present results provide further support for the relationship between caspase activation and apoptotic cell death in hen granulosa cells, the molecular ordering of enzymatic events and the caspase-specific substrates remain to be elucidated.
UR - http://www.scopus.com/inward/record.url?scp=0033999220&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033999220&partnerID=8YFLogxK
U2 - 10.1095/biolreprod62.3.589
DO - 10.1095/biolreprod62.3.589
M3 - Article
C2 - 10684799
AN - SCOPUS:0033999220
SN - 0006-3363
VL - 62
SP - 589
EP - 598
JO - Biology of reproduction
JF - Biology of reproduction
IS - 3
ER -