Abstract
In this work, FeB, NiB, and FeNiB nanomaterials were examined as catalysts for catalytic transfer hydrogenolysis (CTH) using supercritical ethanol (sc-EtOH) as the hydrogen donor and reaction solvent. The earth-abundant alloys were synthesized using simple aqueous chemical reductions and characterized using ICP-OES, XRD, and STEM-EDS. Using acetophenone to model the desired catalytic reactivity, FeNiB was identified as having superior reactivity (74% conversion) and selectivity for complete deoxygenation to ethylbenzene (84%) when compared to the monometallic materials. Given its high reactivity and selectivity for deoxygenation over ring saturation, FeNiB was screened as a lignin valorization catalyst. FeNiB mediates deoxygenation of aliphatic hydroxyl and carbonyls in organosolv lignin via CTH in sc-EtOH. A combination of gel permeation chromatography, GC/MS, and NMR spectroscopy was used to demonstrate the production of a slate of monomeric phenols with intact deoxygenated aliphatic side chains. In total, these results highlight the utility of CTH for the valorization of biorefinery-relevant lignin using an inexpensive, earth-abundant catalyst material and a green solvent system that can be directly derived from the polysaccharide fraction of lignocellulosic biomass.
Original language | English (US) |
---|---|
Pages (from-to) | 190-195 |
Number of pages | 6 |
Journal | Catalysis Today |
Volume | 302 |
DOIs | |
State | Published - Mar 15 2018 |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry