Causal discovery analysis: A promising tool in advancing precision medicine for eating disorders

Lisa M. Anderson, Kelvin O. Lim, Erich Kummerfeld, Ross D. Crosby, Scott J. Crow, Scott G. Engel, Lauren Forrest, Stephen A. Wonderlich, Carol B. Peterson

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Objective: Precision medicine (i.e., individually tailored treatments) represents an optimal goal for treating complex psychiatric disorders, including eating disorders. Within the eating disorders field, most treatment development efforts have been limited in their ability to identify individual-level models of eating disorder psychopathology and to develop and apply an individually tailored treatment for a given individual's personalized model of psychopathology. In addition, research is still needed to identify causal relationships within a given individual's model of eating disorder psychopathology. Addressing this limitation of the current state of precision medicine-related research in the field will allow us to progress toward advancing research and practice for eating disorders treatment. Method: We present a novel set of analytic tools, causal discovery analysis (CDA) methods, which can facilitate increasingly fine-grained, person-specific models of causal relations among cognitive, behavioral, and affective symptoms. Results: CDA can advance the identification of an individual's causal model that maintains that individuals' eating disorder psychopathology. Discussion: In the current article, we (1) introduce CDA methods as a set of promising analytic tools for developing precision medicine methods for eating disorders including the potential strengths and weaknesses of CDA, (2) provide recommendations for future studies utilizing this approach, and (3) outline the potential clinical implications of using CDA to generate personalized models of eating disorder psychopathology. Public Significance Statement: CDA provides a novel statistical approach for identifying causal relationships among variables of interest for a given individual. Person-specific causal models may offer a promising approach to individualized treatment planning and inform future personalized treatment development efforts for eating disorders.

Original languageEnglish (US)
Pages (from-to)2012-2021
Number of pages10
JournalInternational Journal of Eating Disorders
Volume56
Issue number11
DOIs
StatePublished - Nov 2023

All Science Journal Classification (ASJC) codes

  • Psychiatry and Mental health

Fingerprint

Dive into the research topics of 'Causal discovery analysis: A promising tool in advancing precision medicine for eating disorders'. Together they form a unique fingerprint.

Cite this