TY - JOUR
T1 - CCN1 suppresses pulmonary vascular smooth muscle contraction in response to hypoxia
AU - Lee, Seon Jin
AU - Zhang, Meng
AU - Hu, Kebin
AU - Lin, Ling
AU - Zhang, Duo
AU - Jin, Yang
N1 - Publisher Copyright:
© 2015 by the Pulmonary Vascular Research Institute. All rights reserved.
PY - 2015/10/7
Y1 - 2015/10/7
N2 - Pulmonary vasoconstriction and increased vascular resistance are common features in pulmonary hypertension (PH). One of the contributing factors in the development of pulmonary vasoconstriction is increased pulmonary artery smooth muscle cell (PASMC) contraction. Here we report that CCN1, an extracellular matrix molecule, suppressed PASMC contraction in response to hypoxia. CCN1 (Cyr61), discovered in past decade, belongs to the Cyr61-CTGF-Nov (CCN) family. It carries a variety of cellular functions, including angiogenesis and cell adhesion, death, and proliferation. Hypoxia robustly upregulated the expression of CCN1 in the pulmonary vessels and lung parenchyma. Given that CCN1 is a secreted protein and functions in a paracine manner, we examined the potential effects of CCN1 on the adjacent smooth muscle cells. Interestingly, bioactive recombinant CCN1 significantly suppressed hypoxia-induced contraction in human PASMCs in vitro. Consistently, in the in vivo functional studies, administration of bioactive CCN1 protein significantly decreased right ventricular pressure in three different PH animal models. Mechanistically, protein kinase A–pathway inhibitors abolished the effects of CCN1 in suppressing PASMC contraction. Furthermore, CCN1-inhibited smooth muscle contraction was independent of the known vasodilators, such as nitric oxide. Taken together, our studies indicated a novel cellular function of CCN1, potentially regulating the pathogenesis of PH.
AB - Pulmonary vasoconstriction and increased vascular resistance are common features in pulmonary hypertension (PH). One of the contributing factors in the development of pulmonary vasoconstriction is increased pulmonary artery smooth muscle cell (PASMC) contraction. Here we report that CCN1, an extracellular matrix molecule, suppressed PASMC contraction in response to hypoxia. CCN1 (Cyr61), discovered in past decade, belongs to the Cyr61-CTGF-Nov (CCN) family. It carries a variety of cellular functions, including angiogenesis and cell adhesion, death, and proliferation. Hypoxia robustly upregulated the expression of CCN1 in the pulmonary vessels and lung parenchyma. Given that CCN1 is a secreted protein and functions in a paracine manner, we examined the potential effects of CCN1 on the adjacent smooth muscle cells. Interestingly, bioactive recombinant CCN1 significantly suppressed hypoxia-induced contraction in human PASMCs in vitro. Consistently, in the in vivo functional studies, administration of bioactive CCN1 protein significantly decreased right ventricular pressure in three different PH animal models. Mechanistically, protein kinase A–pathway inhibitors abolished the effects of CCN1 in suppressing PASMC contraction. Furthermore, CCN1-inhibited smooth muscle contraction was independent of the known vasodilators, such as nitric oxide. Taken together, our studies indicated a novel cellular function of CCN1, potentially regulating the pathogenesis of PH.
UR - http://www.scopus.com/inward/record.url?scp=85026338925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026338925&partnerID=8YFLogxK
U2 - 10.1086/683812
DO - 10.1086/683812
M3 - Article
AN - SCOPUS:85026338925
SN - 2045-8932
VL - 5
SP - 716
EP - 722
JO - Pulmonary Circulation
JF - Pulmonary Circulation
IS - 4
ER -