TY - JOUR
T1 - Cell line-specific network models of er breast cancer identify potential pi3kainhibitor resistance mechanisms and drug combinations
AU - Zañudo, Jorge Gómez Tejeda
AU - Mao, Pingping
AU - Alcon, Clara
AU - Kowalski, Kailey
AU - Johnson, Gabriela N.
AU - Xu, Guotai
AU - Baselga, Jose
AU - Scaltriti, Maurizio
AU - Letai, Anthony
AU - Montero, Joan
AU - Albert, Réka
AU - Wagle, Nikhil
N1 - Publisher Copyright:
© 2021 American Association for Cancer Research Inc.. All rights reserved.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Durable control of invasive solid tumors necessitates identifying therapeutic resistance mechanisms and effective drug combinations. In this work, we used a network-based mathematical model to identify sensitivity regulators and drug combinations for the PI3Ka inhibitor alpelisib in estrogen receptor positive (ER) PIK3CAmutant breast cancer. The model-predicted efficacious combination of alpelisib and BH3 mimetics, for example, MCL1 inhibitors, was experimentally validated in ER breast cancer cell lines. Consistent with the model, FOXO3 downregulation reduced sensitivity to alpelisib, revealing a novel potential resistance mechanism. Cell line-specific sensitivity to combinations of alpelisib and BH3 mimetics depended on which BCL2 family members were highly expressed. On the basis of these results, newly developed cell line-specific network models were able to recapitulate the observed differential response to alpelisib and BH3 mimetics. This approach illustrates how network-based mathematical models can contribute to overcoming the challenge of cancer drug resistance.
AB - Durable control of invasive solid tumors necessitates identifying therapeutic resistance mechanisms and effective drug combinations. In this work, we used a network-based mathematical model to identify sensitivity regulators and drug combinations for the PI3Ka inhibitor alpelisib in estrogen receptor positive (ER) PIK3CAmutant breast cancer. The model-predicted efficacious combination of alpelisib and BH3 mimetics, for example, MCL1 inhibitors, was experimentally validated in ER breast cancer cell lines. Consistent with the model, FOXO3 downregulation reduced sensitivity to alpelisib, revealing a novel potential resistance mechanism. Cell line-specific sensitivity to combinations of alpelisib and BH3 mimetics depended on which BCL2 family members were highly expressed. On the basis of these results, newly developed cell line-specific network models were able to recapitulate the observed differential response to alpelisib and BH3 mimetics. This approach illustrates how network-based mathematical models can contribute to overcoming the challenge of cancer drug resistance.
UR - http://www.scopus.com/inward/record.url?scp=85114368167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114368167&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-21-1208
DO - 10.1158/0008-5472.CAN-21-1208
M3 - Article
C2 - 34257082
AN - SCOPUS:85114368167
SN - 0008-5472
VL - 81
SP - 4603
EP - 4617
JO - Cancer Research
JF - Cancer Research
IS - 17
ER -