TY - JOUR
T1 - Central Airway Toxicity After High Dose Radiation
T2 - A Combined Analysis of Prospective Clinical Trials for Non-Small Cell Lung Cancer
AU - Wang, Weili
AU - Matuszak, Martha M.
AU - Hu, Chen
AU - Huang, Ke Colin
AU - Chen, Eileen
AU - Arenberg, Douglas
AU - Curtis, Jeffrey L.
AU - Jolly, Shruti
AU - Jin, Jian Yue
AU - Machtay, Mitchell
AU - Ten Haken, Randall K.
AU - Kong, Feng Ming (Spring)
N1 - Publisher Copyright:
© 2020
PY - 2020/11/1
Y1 - 2020/11/1
N2 - Purpose: To study the dosimetric risk factors for radiation-induced proximal bronchial tree (PBT) toxicity in patients treated with radiation therapy for non-small cell lung cancer (NSCLC). Methods and Materials: Patients with medically inoperable or unresectable NSCLC treated with conventionally fractionated 3-dimensional conformal radiation therapy (3DCRT) in prospective clinical trials were eligible for this study. Proximal bronchial tree (PBT) and PBT wall were contoured consistently per RTOG 1106 OAR-Atlas. The dose-volume histograms (DVHs) of physical prescription dose (DVHp) and biological effective dose (α/β = 2.5; DVH2.5) were generated, respectively. The primary endpoint was PBT toxicities, defined by CTCAE 4.0 under the terminology of bronchial stricture/atelectasis. Results: Of 100 patients enrolled, with a median follow-up of 64 months (95% confidence interval [CI], 50-78), 73% received 70 Gy or greater and 17% developed PBT toxicity (grade 1, 8%; grade 2, 6%; grade 3, 0%; and grade 4, 3%). The median time interval between RT initiation and onset of PBT toxicity was 8.4 months (95% CI, 4.7-44.1). The combined DVHs showed that no patient with a PBT maximum physical dose <65 Gy developed any PBT toxicity. Cox proportional hazards analysis and receiver operating characteristic analysis demonstrated that V75 of PBT was the most significant dosimetric parameter for both grade 1+ (P = .035) and grade 2+ (P = .037) PBT toxicities. The dosimetric thresholds for V75 of PBT were 6.8% and 11.9% for grade 1+ and grade 2+ PBT toxicity, respectively. Conclusions: V75 of PBT appeared be the most significant dosimetric parameter for PBT toxicity after conventionally fractionated thoracic 3DCRT. Constraining V75 of PBT can limit clinically significant PBT toxicity.
AB - Purpose: To study the dosimetric risk factors for radiation-induced proximal bronchial tree (PBT) toxicity in patients treated with radiation therapy for non-small cell lung cancer (NSCLC). Methods and Materials: Patients with medically inoperable or unresectable NSCLC treated with conventionally fractionated 3-dimensional conformal radiation therapy (3DCRT) in prospective clinical trials were eligible for this study. Proximal bronchial tree (PBT) and PBT wall were contoured consistently per RTOG 1106 OAR-Atlas. The dose-volume histograms (DVHs) of physical prescription dose (DVHp) and biological effective dose (α/β = 2.5; DVH2.5) were generated, respectively. The primary endpoint was PBT toxicities, defined by CTCAE 4.0 under the terminology of bronchial stricture/atelectasis. Results: Of 100 patients enrolled, with a median follow-up of 64 months (95% confidence interval [CI], 50-78), 73% received 70 Gy or greater and 17% developed PBT toxicity (grade 1, 8%; grade 2, 6%; grade 3, 0%; and grade 4, 3%). The median time interval between RT initiation and onset of PBT toxicity was 8.4 months (95% CI, 4.7-44.1). The combined DVHs showed that no patient with a PBT maximum physical dose <65 Gy developed any PBT toxicity. Cox proportional hazards analysis and receiver operating characteristic analysis demonstrated that V75 of PBT was the most significant dosimetric parameter for both grade 1+ (P = .035) and grade 2+ (P = .037) PBT toxicities. The dosimetric thresholds for V75 of PBT were 6.8% and 11.9% for grade 1+ and grade 2+ PBT toxicity, respectively. Conclusions: V75 of PBT appeared be the most significant dosimetric parameter for PBT toxicity after conventionally fractionated thoracic 3DCRT. Constraining V75 of PBT can limit clinically significant PBT toxicity.
UR - http://www.scopus.com/inward/record.url?scp=85087893070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087893070&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2020.05.026
DO - 10.1016/j.ijrobp.2020.05.026
M3 - Article
C2 - 32470501
AN - SCOPUS:85087893070
SN - 0360-3016
VL - 108
SP - 587
EP - 596
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 3
ER -