TY - JOUR
T1 - CEST MRI of sepsis-induced acute kidney injury
AU - Liu, Jing
AU - Han, Zheng
AU - Chen, Guoli
AU - Li, Yuguo
AU - Zhang, Jia
AU - Xu, Jiadi
AU - van Zijl, Peter C.M.
AU - Zhang, Shuixing
AU - Liu, Guanshu
N1 - Publisher Copyright:
Copyright © 2018 John Wiley & Sons, Ltd.
PY - 2018/8
Y1 - 2018/8
N2 - Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat/S0) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and − 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat/S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and − 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1, T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
AB - Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat/S0) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and − 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat/S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and − 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1, T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
UR - http://www.scopus.com/inward/record.url?scp=85050122733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050122733&partnerID=8YFLogxK
U2 - 10.1002/nbm.3942
DO - 10.1002/nbm.3942
M3 - Article
C2 - 29897643
AN - SCOPUS:85050122733
SN - 0952-3480
VL - 31
JO - NMR in Biomedicine
JF - NMR in Biomedicine
IS - 8
M1 - e3942
ER -