TY - JOUR
T1 - Changes in cerebrospinal fluid flow assessed using intraoperative MRI during posterior fossa decompression for Chiari malformation
AU - Bond, Aaron E.
AU - Jane, John A.
AU - Liu, Kenneth C.
AU - Oldfield, Edward H.
N1 - Publisher Copyright:
© AANS, 2015.
PY - 2015/5
Y1 - 2015/5
N2 - Object The authors completed a prospective, institutional review board-approved study using intraoperative MRI (iMRI) in patients undergoing posterior fossa decompression (PFD) for Chiari I malformation. The purpose of the study was to examine the utility of iMRI in determining when an adequate decompression had been performed. Methods Patients with symptomatic Chiari I malformations with imaging findings of obstruction of the CSF space at the foramen magnum, with or without syringomyelia, were considered candidates for surgery. All patients underwent complete T1, T2, and cine MRI studies in the supine position preoperatively as a baseline. After the patient was placed prone with the neck flexed in position for surgery, iMRI was performed. The patient then underwent a bone decompression of the foramen magnum and arch of C-1, and the MRI was repeated. If obstruction was still present, then in a stepwise fashion the patient underwent dural splitting, duraplasty, and coagulation of the tonsils, with an iMRI study performed after each step guiding the decision to proceed further. Results Eighteen patients underwent PFD for Chiari I malformations between November 2011 and February 2013; 15 prone preincision iMRIs were performed. Fourteen of these patients (93%) demonstrated significant improvement of CSF flow through the foramen magnum dorsal to the tonsils with positioning only. This improvement was so notable that changes in CSF flow as a result of the bone decompression were difficult to discern. Conclusions The authors observed significant CSF flow changes when simply positioning the patient for surgery. These results put into question intraoperative flow assessments that suggest adequate decompression by PFD, whether by iMRI or intraoperative ultrasound. The use of intraoperative imaging during PFD for Chiari I malformation, whether by ultrasound or iMRI, is limited by CSF flow dynamics across the foramen magnum that change significantly when the patient is positioned for surgery.
AB - Object The authors completed a prospective, institutional review board-approved study using intraoperative MRI (iMRI) in patients undergoing posterior fossa decompression (PFD) for Chiari I malformation. The purpose of the study was to examine the utility of iMRI in determining when an adequate decompression had been performed. Methods Patients with symptomatic Chiari I malformations with imaging findings of obstruction of the CSF space at the foramen magnum, with or without syringomyelia, were considered candidates for surgery. All patients underwent complete T1, T2, and cine MRI studies in the supine position preoperatively as a baseline. After the patient was placed prone with the neck flexed in position for surgery, iMRI was performed. The patient then underwent a bone decompression of the foramen magnum and arch of C-1, and the MRI was repeated. If obstruction was still present, then in a stepwise fashion the patient underwent dural splitting, duraplasty, and coagulation of the tonsils, with an iMRI study performed after each step guiding the decision to proceed further. Results Eighteen patients underwent PFD for Chiari I malformations between November 2011 and February 2013; 15 prone preincision iMRIs were performed. Fourteen of these patients (93%) demonstrated significant improvement of CSF flow through the foramen magnum dorsal to the tonsils with positioning only. This improvement was so notable that changes in CSF flow as a result of the bone decompression were difficult to discern. Conclusions The authors observed significant CSF flow changes when simply positioning the patient for surgery. These results put into question intraoperative flow assessments that suggest adequate decompression by PFD, whether by iMRI or intraoperative ultrasound. The use of intraoperative imaging during PFD for Chiari I malformation, whether by ultrasound or iMRI, is limited by CSF flow dynamics across the foramen magnum that change significantly when the patient is positioned for surgery.
UR - http://www.scopus.com/inward/record.url?scp=84936818587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936818587&partnerID=8YFLogxK
U2 - 10.3171/2015.1.JNS132712
DO - 10.3171/2015.1.JNS132712
M3 - Article
C2 - 25699415
AN - SCOPUS:84936818587
SN - 0022-3085
VL - 122
SP - 1068
EP - 1075
JO - Journal of neurosurgery
JF - Journal of neurosurgery
IS - 5
ER -