Changes in segmental inertial properties with age

Jennifer Muri, Samantha L. Winter, John H. Challis

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


The purpose of this study was to examine how the limb segment inertial parameters vary across the decades from the 1920s to the 1970s. Sixty-six males participated in this study, ranging in age from 20 to 79 years. Pre-screening ensured that all subjects were healthy. The inertial properties of the segments were determined by modeling each segment as series of geometric solids. A multivariate analysis of variance (ANOVA) revealed statistically significant differences between decade age groups for the upper arm, forearm, shank, and thigh (p<0.01). Subsequent ANOVAs revealed statistically significant differences for all the inertial properties for the upper arm, the center of mass location for the forearm, and segment mass for the thigh. Linear regression lines were fit to the data so that each inertial parameter for each segment could be predicted by subject's age, with the slope of this regression line indicating the trend in the data. These trends were statistically significant for all forearm inertial parameters, thigh mass and longitudinal moment of inertia, and forearm center of mass location. The changes for the thigh, upper arm, and forearm were consistent with the changes, which would accompany a change in muscle mass with aging. Resultant joint moments were computed for a set of gait data using inertial properties reflective of the subjects from the age extremes in the study. The resulting differences in the knee and hip moments, young versus old, were all less than 4.5%.

Original languageEnglish (US)
Pages (from-to)1809-1812
Number of pages4
JournalJournal of Biomechanics
Issue number8
StatePublished - 2008

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation


Dive into the research topics of 'Changes in segmental inertial properties with age'. Together they form a unique fingerprint.

Cite this