TY - GEN
T1 - Changes in the dynamic stability of walking in active healthy older adults independent of changes in walking speed
AU - Hyun, Gu Kang
AU - Dingwell, Jonathan B.
PY - 2009
Y1 - 2009
N2 - Older adults commonly walk slower, which many believe helps improve their walking stability. However, they remain at increased risk of falls. We investigated how differences in age and walking speed independently affect dynamic stability during walking, and how age-related changes in leg strength and ROM affected this relationship. Eighteen active healthy older and 17 younger adults walked on a treadmill for 5 minutes each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's responses to small inherent perturbations during walking. These older adults exhibited the same preferred walking speeds as the younger subjects (p = 0.860). However, these older adults still exhibited greater local divergence exponents (p<.0001) and higher maximum FM (p<0.007) than young adults at all walking speeds. These older adults remained more unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). The older adults in this study were healthy enough to walk at normal speeds. However, these adults were still more unstable than the young adults, independent of walking speed. This greater instability was not explained by loss of leg strength and ROM. Slower speeds led to decreased instability in both groups.
AB - Older adults commonly walk slower, which many believe helps improve their walking stability. However, they remain at increased risk of falls. We investigated how differences in age and walking speed independently affect dynamic stability during walking, and how age-related changes in leg strength and ROM affected this relationship. Eighteen active healthy older and 17 younger adults walked on a treadmill for 5 minutes each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's responses to small inherent perturbations during walking. These older adults exhibited the same preferred walking speeds as the younger subjects (p = 0.860). However, these older adults still exhibited greater local divergence exponents (p<.0001) and higher maximum FM (p<0.007) than young adults at all walking speeds. These older adults remained more unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). The older adults in this study were healthy enough to walk at normal speeds. However, these adults were still more unstable than the young adults, independent of walking speed. This greater instability was not explained by loss of leg strength and ROM. Slower speeds led to decreased instability in both groups.
UR - http://www.scopus.com/inward/record.url?scp=70049084920&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70049084920&partnerID=8YFLogxK
U2 - 10.1115/IMECE2008-67807
DO - 10.1115/IMECE2008-67807
M3 - Conference contribution
AN - SCOPUS:70049084920
SN - 9780791848630
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 381
EP - 384
BT - 2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
T2 - 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008
Y2 - 31 October 2008 through 6 November 2008
ER -