TY - JOUR
T1 - Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers
AU - Park, Seung Eek
AU - Shrout, Thomas R.
N1 - Funding Information:
Manuscript received July 9, 1996; accepted January 13, 1997. This research has been supported by Office of Naval Research and Whitaker Center for Ultrasonic Imaging.
PY - 1997
Y1 - 1997
N2 - For ultrasonic transducers, piezoelectric ceramics offer a range of dielectric constants (K ∼ 1000-5000), large piezoelectric coefficients (dij ∼ 200-700 pC/N), and high electromechanical coupling (fey 50%, k33 ≃ = 75%). For several decades, the material of choice has been polycrystalline ceramics based on the solid solution Pb(Zr1-x,Tix)O3 (PZT), compositionally engineered near the morphotropic phase boundary (MPB). The search for alternative MPB systems has led researchers to revisit relaxor-based materials with the general formula, Pb(B1,B2)O3 (B1:Zn2+, Mg2+, Sc3+, Ni2+ ..., B2:Nb5+, Ta5+ ...). There are some claims of superior dielectric and piezoelectric performance compared to that of PZT materials. However, when the properties are examined relative to transition temperature (Tc), these differences are not significant. In the single crystal form, however, Relaxor-PT materials, represented by Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) have been found to exhibit longitudinal coupling coefficients (k33) > 90%, thickness coupling (kT) > 63%, dielectric constants ranging from 1000 to 5000 with low dielectric loss < 1%, and exceptional piezoelectric coefficients d33 > 2000 pC/N, the later promising for high energy density actuators. For single crystal piezoelectrics to become the next generation material of ultrasonic transducers, further investigation in crystal growth, device fabrication and testing are required.
AB - For ultrasonic transducers, piezoelectric ceramics offer a range of dielectric constants (K ∼ 1000-5000), large piezoelectric coefficients (dij ∼ 200-700 pC/N), and high electromechanical coupling (fey 50%, k33 ≃ = 75%). For several decades, the material of choice has been polycrystalline ceramics based on the solid solution Pb(Zr1-x,Tix)O3 (PZT), compositionally engineered near the morphotropic phase boundary (MPB). The search for alternative MPB systems has led researchers to revisit relaxor-based materials with the general formula, Pb(B1,B2)O3 (B1:Zn2+, Mg2+, Sc3+, Ni2+ ..., B2:Nb5+, Ta5+ ...). There are some claims of superior dielectric and piezoelectric performance compared to that of PZT materials. However, when the properties are examined relative to transition temperature (Tc), these differences are not significant. In the single crystal form, however, Relaxor-PT materials, represented by Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT), Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) have been found to exhibit longitudinal coupling coefficients (k33) > 90%, thickness coupling (kT) > 63%, dielectric constants ranging from 1000 to 5000 with low dielectric loss < 1%, and exceptional piezoelectric coefficients d33 > 2000 pC/N, the later promising for high energy density actuators. For single crystal piezoelectrics to become the next generation material of ultrasonic transducers, further investigation in crystal growth, device fabrication and testing are required.
UR - http://www.scopus.com/inward/record.url?scp=0031237724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031237724&partnerID=8YFLogxK
U2 - 10.1109/58.655639
DO - 10.1109/58.655639
M3 - Article
AN - SCOPUS:0031237724
SN - 0885-3010
VL - 44
SP - 1140
EP - 1147
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 5
ER -