Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s

Qiaoyan Liu, Shaoting Cheng, Zibiao Li, Kaitian Xu, Guo Qiang Chen

Research output: Contribution to journalArticlepeer-review

49 Scopus citations


Poly(ester-urethane)s (PUs) were synthesized using hexamethylene diisocyanate (HDI) or toluene diisocyanate (TDI) to join short chains (M n 5 2000) of poly(R-3-hydroxybutyrate) (PHB) diols and poly(ε-caprolactone) (PCL) diols with different feed ratios under different reaction conditions. The multiblock copolymers were characterized by nuclear magnetic resonance spectrometer (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). XRD spectra and second DSC heat thermograms of the multiblock copolymers revealed that the crystallization of both PHB and PCL segments was mutually restricted, and, especially, the PCL segment limited the cold crystallization of the PHB segment. The SEM of platelet adhesion experiments showed that the hemocompatibility was affected to some extent by the chain flexibility of the polymers. Hydrolysis studies demonstrated that the hydrolytic degradation of PUs was generated from the scission of their ester bonds or/and urethane bonds. Simultaneously, the rate of ester bond scission was determined to some extent by the crystallization degree, which was further affected by the configuration of polymer chains. These highly elastic multiblock copolymers combining hemocompatibility and biodegradability may be developed into blood contact implant materials for biomedical applications.

Original languageEnglish (US)
Pages (from-to)1162-1176
Number of pages15
JournalJournal of Biomedical Materials Research - Part A
Issue number4
StatePublished - Sep 15 2009

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys


Dive into the research topics of 'Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s'. Together they form a unique fingerprint.

Cite this