Characterization of high pressure jet–induced fat-protein complexation

Research output: Contribution to journalArticlepeer-review


High-pressure-jet (HPJ) processing of various dairy systems has been shown to disrupt fat droplets and casein micelles and cause a strong association between fat and casein proteins. The present work seeks to better describe this association between fat and casein using a model milk formulated from confectionary coating fat (3.6% wt/wt), micellar casein (3.4% wt/wt), and water (93% wt/wt), which was then pasteurized, homogenized, and then either HPJ-treated (400 MPa) or not (non-HPJ-treated, control). Upon ultracentrifugation, fat in the non-HPJ-treated model milk creamed due to its low density. In the HPJ-treated model milk, fat precipitated with protein into a thick bottom layer upon ultracentrifugation, reflecting a strong association between protein and fat. Differential scanning calorimetry (DSC) and time-domain nuclear magnetic resonance of the non-HPJ-treated model milk revealed fat in 2 physical states: (1) fat that is physically similar to the bulk fat and (2) fat that was in smaller droplets (i.e., homogenized) and crystallized at a lower temperature than the bulk fat. In contrast, DSC of HPJ-treated model milks supported the presence of fat in 3 states: (1) fat that is physically similar to the bulk fat, (2) fat in small droplets that required substantial supercooling beyond the non-HPJ-treated model milk to crystallize, and (3) fat in such small domains that it crystallizes in a less stable polymorphic form than the non-HPJ-treated model milk (or does not crystallize at all). The state of fat within the HPJ-treated model milk changed minimally with acidification, indicating that the association is not dependent on the charge on the casein. Cryogenic transmission electron microscopy (Cryo-TEM) of the non-HPJ-treated model milk revealed uniform casein micelles, which likely adsorbed to the surface of fat globules post-homogenization. In contrast, Cryo-TEM of the HPJ-treated model milk revealed a porous protein aggregate that likely had dispersed fat throughout. Together, these results suggest that HPJ treatment causes fat to be entrapped by casein proteins in very small domains.

Original languageEnglish (US)
Pages (from-to)2119-2131
Number of pages13
JournalJournal of dairy science
Issue number3
StatePublished - Mar 2022

All Science Journal Classification (ASJC) codes

  • Food Science
  • Animal Science and Zoology
  • Genetics


Dive into the research topics of 'Characterization of high pressure jet–induced fat-protein complexation'. Together they form a unique fingerprint.

Cite this