Characterization of polyvinylidene fluoride (PVDF)-double-walled carbon nanotubes (DWNT)

Zoubeida Ounaies, Seok Kim Yeon, Atheer Almasri, Jaime Grunlan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

In this work, we propose a new generation of sensors and actuators based on a piezoelectric polymer (PVDF) with embedded carbon nanotubes. Polyvinylidene fluoride (PVDF)-double walled carbon-nanotubes (DWNT) composite films are prepared with the goal to develop new polymeric materials with enhanced electrical and electromechanical properties. Electrical conductivity and dielectric properties of polyvinylidene fluoride- double-walled carbon nanotubes composites are investigated as a function of frequency (10 Hz -1 MHz), and as a function of weight fraction (0.01-2 wt%). DWNT and PVDF are mixed under mechanical stirring and sonication. The dispersion is assessed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM), indicating a good dispersion. Differential Scanning Calorimetery (DSC) is used to study the effect of DWNTs inclusions on the glass transition temperature, Tg, and the crystallinity of the resulting PVDF composite. The percolation threshold is computed by using the bulk conductivity data and it is found that percolation occurs at about 0.19wt%.

Original languageEnglish (US)
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Materials
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
DOIs
StatePublished - 2006
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: Nov 5 2006Nov 10 2006

Publication series

NameAmerican Society of Mechanical Engineers, Materials Division (Publication) MD
ISSN (Print)1071-6939

Conference

Conference2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Country/TerritoryUnited States
CityChicago, IL
Period11/5/0611/10/06

All Science Journal Classification (ASJC) codes

  • General Engineering

Cite this