TY - JOUR
T1 - Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily
AU - Lee, Kyung Hoon
AU - Saleh, Lana
AU - Anton, Brian P.
AU - Madinger, Catherine L.
AU - Benner, Jack S.
AU - Iwig, David F.
AU - Roberts, Richard J.
AU - Krebs, Carsten
AU - Booker, Squire J.
PY - 2009/10/27
Y1 - 2009/10/27
N2 - RimO, encoded by the yliG gene in Escherichia coli, has been recently identified in vivo as the enzyme responsible for the attachment of a methylthio group on the β-carbon of Asp88 of the small ribosomal protein S12 [Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 1826-1831]. To date, it is the only enzyme known to catalyze methylthiolation of a protein substrate; the four other naturally occurring methylthio modifications have been observed on tRNA. All members of the methylthiotransferase (MTTase) family, to which RimO belongs, have been shown to contain the canonical CxxxCxxC motif in their primary structures that is typical of the radical S-adenosylmethionine (SAM) family of proteins. MiaB, the only characterized MTTase, and the enzyme experimentally shown to be responsible for methylthiolation of N6- isopentenyladenosine of tRNA in E. coli and Thermotoga maritima, has been demonstrated to harbor two distinct [4Fe-4S] clusters. Herein, we report in vitro biochemical and spectroscopic characterization of RimO.We show by analytical and spectroscopic methods that RimO, overproduced in E. coli in the presence of iron-sulfur cluster biosynthesis proteins from Azotobacter vinelandii, contains one [4Fe-4S]2+ cluster. Reconstitution of this form of RimO (RimOrcn) with 57Fe and sodium sulfide results in a protein that contains two [4Fe-4S]2+ clusters, similar toMiaB. We also show by mass spectrometry that RimOrcn catalyzes the attachment of a methylthio group to a peptide substrate analogue that mimics the loop structure bearing aspartyl 88 of the S12 ribosomal protein from E. coli. Kinetic analysis of this reaction shows that the activity of RimOrcn in the presence of the substrate analogue does not support a complete turnover. We discuss the possible requirement for an assembled ribosome for fully active RimO in vitro. Our findings are consistent with those of other enzymes that catalyze sulfur insertion, such as biotin synthase, lipoyl synthase, and MiaB.
AB - RimO, encoded by the yliG gene in Escherichia coli, has been recently identified in vivo as the enzyme responsible for the attachment of a methylthio group on the β-carbon of Asp88 of the small ribosomal protein S12 [Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 1826-1831]. To date, it is the only enzyme known to catalyze methylthiolation of a protein substrate; the four other naturally occurring methylthio modifications have been observed on tRNA. All members of the methylthiotransferase (MTTase) family, to which RimO belongs, have been shown to contain the canonical CxxxCxxC motif in their primary structures that is typical of the radical S-adenosylmethionine (SAM) family of proteins. MiaB, the only characterized MTTase, and the enzyme experimentally shown to be responsible for methylthiolation of N6- isopentenyladenosine of tRNA in E. coli and Thermotoga maritima, has been demonstrated to harbor two distinct [4Fe-4S] clusters. Herein, we report in vitro biochemical and spectroscopic characterization of RimO.We show by analytical and spectroscopic methods that RimO, overproduced in E. coli in the presence of iron-sulfur cluster biosynthesis proteins from Azotobacter vinelandii, contains one [4Fe-4S]2+ cluster. Reconstitution of this form of RimO (RimOrcn) with 57Fe and sodium sulfide results in a protein that contains two [4Fe-4S]2+ clusters, similar toMiaB. We also show by mass spectrometry that RimOrcn catalyzes the attachment of a methylthio group to a peptide substrate analogue that mimics the loop structure bearing aspartyl 88 of the S12 ribosomal protein from E. coli. Kinetic analysis of this reaction shows that the activity of RimOrcn in the presence of the substrate analogue does not support a complete turnover. We discuss the possible requirement for an assembled ribosome for fully active RimO in vitro. Our findings are consistent with those of other enzymes that catalyze sulfur insertion, such as biotin synthase, lipoyl synthase, and MiaB.
UR - http://www.scopus.com/inward/record.url?scp=70350215875&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350215875&partnerID=8YFLogxK
U2 - 10.1021/bi900939w
DO - 10.1021/bi900939w
M3 - Article
C2 - 19736993
AN - SCOPUS:70350215875
SN - 0006-2960
VL - 48
SP - 10162
EP - 10174
JO - Biochemistry
JF - Biochemistry
IS - 42
ER -