Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily

Kyung Hoon Lee, Lana Saleh, Brian P. Anton, Catherine L. Madinger, Jack S. Benner, David F. Iwig, Richard J. Roberts, Carsten Krebs, Squire J. Booker

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


RimO, encoded by the yliG gene in Escherichia coli, has been recently identified in vivo as the enzyme responsible for the attachment of a methylthio group on the β-carbon of Asp88 of the small ribosomal protein S12 [Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 1826-1831]. To date, it is the only enzyme known to catalyze methylthiolation of a protein substrate; the four other naturally occurring methylthio modifications have been observed on tRNA. All members of the methylthiotransferase (MTTase) family, to which RimO belongs, have been shown to contain the canonical CxxxCxxC motif in their primary structures that is typical of the radical S-adenosylmethionine (SAM) family of proteins. MiaB, the only characterized MTTase, and the enzyme experimentally shown to be responsible for methylthiolation of N6- isopentenyladenosine of tRNA in E. coli and Thermotoga maritima, has been demonstrated to harbor two distinct [4Fe-4S] clusters. Herein, we report in vitro biochemical and spectroscopic characterization of RimO.We show by analytical and spectroscopic methods that RimO, overproduced in E. coli in the presence of iron-sulfur cluster biosynthesis proteins from Azotobacter vinelandii, contains one [4Fe-4S]2+ cluster. Reconstitution of this form of RimO (RimOrcn) with 57Fe and sodium sulfide results in a protein that contains two [4Fe-4S]2+ clusters, similar toMiaB. We also show by mass spectrometry that RimOrcn catalyzes the attachment of a methylthio group to a peptide substrate analogue that mimics the loop structure bearing aspartyl 88 of the S12 ribosomal protein from E. coli. Kinetic analysis of this reaction shows that the activity of RimOrcn in the presence of the substrate analogue does not support a complete turnover. We discuss the possible requirement for an assembled ribosome for fully active RimO in vitro. Our findings are consistent with those of other enzymes that catalyze sulfur insertion, such as biotin synthase, lipoyl synthase, and MiaB.

Original languageEnglish (US)
Pages (from-to)10162-10174
Number of pages13
Issue number42
StatePublished - Oct 27 2009

All Science Journal Classification (ASJC) codes

  • Biochemistry


Dive into the research topics of 'Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily'. Together they form a unique fingerprint.

Cite this