Abstract
The skeletal muscle sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a) mediates muscle relaxation by pumping Ca2+ from the cytosol to the ER/SR lumen. In efforts aimed at understanding the structural basis for the conformational changes accompanying the reaction cycle catalyzed by SERCA1a, we have studied the ATP-binding domain of SERCA1a in both nucleotide-bound and -free forms by NMR. Limited proteolysis analyses guided us to express a 28 kDa stably folded fragment containing the nucleotide-binding domain of SERCA1a spanning residues Thr357-Leu600. ATP binding activity was demonstrated for this fragment by a FITC competition assay. A nearly complete backbone resonance assignment of this 28 kDa ATP-binding fragment, in both the AMP-PNP-bound and -free forms, was obtained by means of heteronuclear multidimensional NMR techniques. NMR titration experiments with AMP-PNP revealed a confined nucleotide-binding site which coincides with a cytoplasmic pocket region identified in the crystal structure of apo-SERCA1a. These results are consistent with previous site-directed mutagenesis studies of SERCA1a.
Original language | English (US) |
---|---|
Pages (from-to) | 1156-1164 |
Number of pages | 9 |
Journal | Biochemistry |
Volume | 41 |
Issue number | 4 |
DOIs | |
State | Published - Jan 29 2002 |
All Science Journal Classification (ASJC) codes
- Biochemistry