TY - JOUR
T1 - Characterization of the Cofactor Composition of Escherichia coli Biotin Synthase
AU - Cosper, Michele Mader
AU - Jameson, Guy N.L.
AU - Hernández, Heather L.
AU - Krebs, Carsten
AU - Huynh, Boi Hanh
AU - Johnson, Michael K.
PY - 2004/2/24
Y1 - 2004/2/24
N2 - The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and Mössbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S]2+ cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O2. The other site accommodates a [4Fe-4S]2+,+ cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S]2+ cluster and undergoes O 2-induced degradation via a distinct type of [2Fe-2S]2+ cluster intermediate. In vivo Mössbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S]2+ cluster and demonstrate that the [2Fe-2S]2+ cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O2-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S]2+ cluster as the immediate S-donor for biotin biosynthesis.
AB - The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and Mössbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S]2+ cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O2. The other site accommodates a [4Fe-4S]2+,+ cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S]2+ cluster and undergoes O 2-induced degradation via a distinct type of [2Fe-2S]2+ cluster intermediate. In vivo Mössbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S]2+ cluster and demonstrate that the [2Fe-2S]2+ cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O2-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S]2+ cluster as the immediate S-donor for biotin biosynthesis.
UR - http://www.scopus.com/inward/record.url?scp=1242285458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1242285458&partnerID=8YFLogxK
U2 - 10.1021/bi0356653
DO - 10.1021/bi0356653
M3 - Article
C2 - 14967041
AN - SCOPUS:1242285458
SN - 0006-2960
VL - 43
SP - 2007
EP - 2021
JO - Biochemistry
JF - Biochemistry
IS - 7
ER -