TY - JOUR
T1 - Characterizing Sierra Nevada snowpack using variable-resolution CESM
AU - Rhoades, Alan M.
AU - Huang, Xingying
AU - Ullrich, Paul A.
AU - Zarzycki, Colin M.
N1 - Publisher Copyright:
© 2016 American Meteorological Society.
PY - 2016
Y1 - 2016
N2 - The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique-variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)-at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere-ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the "Daymet," "Cal-Adapt," NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California's complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of < 7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December-February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.
AB - The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique-variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)-at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere-ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the "Daymet," "Cal-Adapt," NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California's complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of < 7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December-February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.
UR - http://www.scopus.com/inward/record.url?scp=84956869935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84956869935&partnerID=8YFLogxK
U2 - 10.1175/JAMC-D-15-0156.1
DO - 10.1175/JAMC-D-15-0156.1
M3 - Article
AN - SCOPUS:84956869935
SN - 1558-8424
VL - 55
SP - 173
EP - 196
JO - Journal of Applied Meteorology and Climatology
JF - Journal of Applied Meteorology and Climatology
IS - 1
ER -