TY - JOUR
T1 - Characterizing the floral resources of a North American metropolis using a honey bee foraging assay
AU - Sponsler, Douglas B.
AU - Shump, Don
AU - Richardson, Rodney T.
AU - Grozinger, Christina M.
N1 - Publisher Copyright:
© 2020 The Authors.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - Roughly a third of described insect species visit flowers, making the flower–insect interface one of the chief pillars of global biodiversity. Studying flower–insect relationships at the scale of communities and landscapes has been hindered, however, by the methodological challenges of quantifying landscape-scale floral resources. This challenge is especially acute in urban landscapes, where traditional floral surveying techniques are ill-suited to the unique constraints of built environments. To surmount these challenges, we devised a “honey bee foraging assay” approach to floral resource surveying, wherein continuous colony weight tracking and DNA metabarcoding of pollen samples are used to capture both the overall availability and taxonomic composition of floral resources. We deploy this methodology in the complex urban ecosystem of Philadelphia, Pennsylvania, USA. Our results reveal distinct seasonality of floral resource availability, with pulses of high availability in May, June, and September, and a period of prolonged scarcity in August. Pollen genus richness mirrored this pattern, with peak richness in May and June. The taxonomic composition of pollen samples varied seasonally, reflecting underlying floral phenology, with especially strong turnover between May and June samples and between August and September samples delineating well-defined spring, summer, and fall floral resource communities. Trait analysis also revealed seasonal structure, with spring samples characterized by trees and shrubs, summer samples including a stronger presence of herbaceous “weeds”, and fall samples dominated by woody vines. Native flora predominated in spring, giving way to a preponderance of exotic flora in summer and fall. At a basic level, this yields insight into the assembly of novel urban floral resource communities, showcasing, for example, the emergence of a woody vine-dominated fall flora. At an applied level, our data can inform urban land management, such as the design of ecologically functional ornamental plantings, while also providing practical guidance to beekeepers seeking to adapt their management activities to floral resource seasonality. Methodologically, our study demonstrates the potential of the honey bee foraging assay as a powerful technique for landscape-scale floral resource surveying, provided the inherent biases of honey bee foraging are accounted for in the interpretation of the results.
AB - Roughly a third of described insect species visit flowers, making the flower–insect interface one of the chief pillars of global biodiversity. Studying flower–insect relationships at the scale of communities and landscapes has been hindered, however, by the methodological challenges of quantifying landscape-scale floral resources. This challenge is especially acute in urban landscapes, where traditional floral surveying techniques are ill-suited to the unique constraints of built environments. To surmount these challenges, we devised a “honey bee foraging assay” approach to floral resource surveying, wherein continuous colony weight tracking and DNA metabarcoding of pollen samples are used to capture both the overall availability and taxonomic composition of floral resources. We deploy this methodology in the complex urban ecosystem of Philadelphia, Pennsylvania, USA. Our results reveal distinct seasonality of floral resource availability, with pulses of high availability in May, June, and September, and a period of prolonged scarcity in August. Pollen genus richness mirrored this pattern, with peak richness in May and June. The taxonomic composition of pollen samples varied seasonally, reflecting underlying floral phenology, with especially strong turnover between May and June samples and between August and September samples delineating well-defined spring, summer, and fall floral resource communities. Trait analysis also revealed seasonal structure, with spring samples characterized by trees and shrubs, summer samples including a stronger presence of herbaceous “weeds”, and fall samples dominated by woody vines. Native flora predominated in spring, giving way to a preponderance of exotic flora in summer and fall. At a basic level, this yields insight into the assembly of novel urban floral resource communities, showcasing, for example, the emergence of a woody vine-dominated fall flora. At an applied level, our data can inform urban land management, such as the design of ecologically functional ornamental plantings, while also providing practical guidance to beekeepers seeking to adapt their management activities to floral resource seasonality. Methodologically, our study demonstrates the potential of the honey bee foraging assay as a powerful technique for landscape-scale floral resource surveying, provided the inherent biases of honey bee foraging are accounted for in the interpretation of the results.
UR - http://www.scopus.com/inward/record.url?scp=85084434836&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084434836&partnerID=8YFLogxK
U2 - 10.1002/ecs2.3102
DO - 10.1002/ecs2.3102
M3 - Article
AN - SCOPUS:85084434836
SN - 2150-8925
VL - 11
JO - Ecosphere
JF - Ecosphere
IS - 4
M1 - e03102
ER -