Characterizing X-ray Optics for OGRE and its Pathfinder Mission

Alexandra Higley, Jake McCoy, Randall McEntaffer, Bridget O'Meara, James Henry Tutt, Vadim Burwitz, Gisela Hartner, Andreas Langmeier, Thomas Müller, Surangkhana Rukdee, Thomas Schmidt, Andrew Holland, Daniel Evan, Karen Holland, David Colebrook, David Gopinath, Casey DeRoo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Off-Plane Grating Rocket Experiment (OGRE) will flight-test high-precision X-ray technology in a three-component spectrometer comprised of a Wolter-I telescope, X-ray reflection gratings and electron-multiplying charge-coupled devices (EM-CCDs). OGRE will demonstrate cutting-edge X-ray mirrors known as mono-crystalline silicon optics which are planned for use on several proposed X-ray Probe missions, and fly X-ray reflection gratings that after our recent characterization campaign, indicate high-precision spectral resolution. This X-ray technology serves as a great candidate for space-based X-ray astronomy as we move towards a Lynx-like flagship mission, and OGRE will be the first mission to test such gratings and optics in space. However, mono-crystalline silicon optics are still in development, while the gratings and electronics section of OGRE will be ready for a flight-test in the immediate future. In the interim, it is proposed that OGRE achieves a pathfinder flight which incorporates the Joint European Telescope for X-ray astronomy (JET-X) as a substitute optic, establishing an initial flight for the gratings and electronics on board. A pathfinder flight will reduce risk and gain insight for a full OGRE launch which will fly mono-crystalline silicon optics for the first time. Through an extensive characterization campaign for JET-X, the mono-crystalline silicon optics, EM-CCDs and a reflection grating, we have measured the performance of the OGRE spectrometer for its pathfinder flight. We confirm the continued ability of the JET-X optic, and that both the OGRE and Pathfinder OGRE spectrometers are capable of meeting the science requirement of R > 150012 Additionally, we motivate that with more detailed analysis, even higher spectral resolutions could be possible, alongside a result for the resolution of the grating itself.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2024
Subtitle of host publicationUltraviolet to Gamma Ray
EditorsJan-Willem A. den Herder, Shouleh Nikzad, Kazuhiro Nakazawa
PublisherSPIE
ISBN (Electronic)9781510675094
DOIs
StatePublished - 2024
EventSpace Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray - Yokohama, Japan
Duration: Jun 16 2024Jun 21 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13093
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray
Country/TerritoryJapan
CityYokohama
Period6/16/246/21/24

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Characterizing X-ray Optics for OGRE and its Pathfinder Mission'. Together they form a unique fingerprint.

Cite this