TY - JOUR
T1 - Charge Detection Mass Spectrometry Reveals Favored Structures in the Assembly of Virus-Like Particles
T2 - Polymorphism in Norovirus GI.1
AU - Miller, Lohra M.
AU - Draper, Benjamin E.
AU - Wang, Joseph C.Y.
AU - Jarrold, Martin F.
N1 - Publisher Copyright:
© 2024 American Chemical Society
PY - 2024/8/13
Y1 - 2024/8/13
N2 - The main capsid protein (CP) of norovirus, the leading cause of gastroenteritis, is expected to self-assemble into virus-like particles with the same structure as the wild-type virus, a capsid with 180 CPs in a T = 3 icosahedron. Using charge detection mass spectrometry (CD-MS), we find that the norovirus GI.1 variant is structurally promiscuous, forming a wide variety of well-defined structures, some that are icosahedral capsids and others that are not. The structures that are present evolve with time and vary with solution conditions. The presence of icosahedral T = 3 and T = 4 capsids (240 CPs) under some conditions was confirmed by cryo-electron microscopy (cryo-EM). The cryo-EM studies also confirmed the presence of an unexpected prolate geometry based on an elongated T = 4 capsid with 300 CPs. In addition, CD-MS measurements indicate the presence of well-defined peaks with masses corresponding to 420, 480, 600, and 700 CPs. The peak corresponding to 420 CPs is probably due to an icosahedral T = 7 capsid, but this could not be confirmed by cryo-EM. It is possible that the T = 7 particles are too fragile to survive vitrification. There are no mass peaks associated with the T = 9 and T = 12 icosahedra with 540 and 720 CPs. The larger structures with 480, 600, and 700 CPs are not icosahedral; however, their measured charges suggest that they are hollow shells. The use of CD-MS to monitor virus-like particles assembly may have important applications in vaccine development and quality control.
AB - The main capsid protein (CP) of norovirus, the leading cause of gastroenteritis, is expected to self-assemble into virus-like particles with the same structure as the wild-type virus, a capsid with 180 CPs in a T = 3 icosahedron. Using charge detection mass spectrometry (CD-MS), we find that the norovirus GI.1 variant is structurally promiscuous, forming a wide variety of well-defined structures, some that are icosahedral capsids and others that are not. The structures that are present evolve with time and vary with solution conditions. The presence of icosahedral T = 3 and T = 4 capsids (240 CPs) under some conditions was confirmed by cryo-electron microscopy (cryo-EM). The cryo-EM studies also confirmed the presence of an unexpected prolate geometry based on an elongated T = 4 capsid with 300 CPs. In addition, CD-MS measurements indicate the presence of well-defined peaks with masses corresponding to 420, 480, 600, and 700 CPs. The peak corresponding to 420 CPs is probably due to an icosahedral T = 7 capsid, but this could not be confirmed by cryo-EM. It is possible that the T = 7 particles are too fragile to survive vitrification. There are no mass peaks associated with the T = 9 and T = 12 icosahedra with 540 and 720 CPs. The larger structures with 480, 600, and 700 CPs are not icosahedral; however, their measured charges suggest that they are hollow shells. The use of CD-MS to monitor virus-like particles assembly may have important applications in vaccine development and quality control.
UR - https://www.scopus.com/pages/publications/85199944421
UR - https://www.scopus.com/inward/citedby.url?scp=85199944421&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.4c01913
DO - 10.1021/acs.analchem.4c01913
M3 - Article
C2 - 39074122
AN - SCOPUS:85199944421
SN - 0003-2700
VL - 96
SP - 13150
EP - 13157
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 32
ER -