TY - JOUR
T1 - Chasing the hare - Evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae)
AU - Naumann, Julia
AU - Symmank, Lars
AU - Samain, Marie Stéphanie
AU - Müller, Kai F.
AU - Neinhuis, Christoph
AU - Depamphilis, Claude W.
AU - Wanke, Stefan
N1 - Funding Information:
This work was financially supported by the German Research Foundation (DFG; NE681/5-1, NE681/5-2, NE681/10-1) to CN, SW; the Research Foundation Flanders (FWO-Vlaanderen; FWO G.0172.07; FWO travel grants to MSS); a postdoctoral fellowship from the DAAD to SW; the German Academic Exchange Service (PPP Colombia) to SW, the German Academic Exchange Service (PPP USA) to KFM, CWD, SW; “Gesellschaft der Freunde und Förderer der TU Dresden” ("Friends of the TU Dresden”), and the Friends of the Botanical Garden Ghent. We are grateful to the Botanical Gardens of Ghent University and University of Technology Dresden for general support. We thank the authorities of Bolivia (permit number MDRAyMA-VBRFMA-DGBAP-UAVPS N° 046/08), Mexico (permit numbers SGPA/DGGFS/712/1397/ 07 and SGPA/DGGFS/712/2486/09) and Peru (permit number 009-2009-AG-DGFFS-DGEFFS) for permission to collect material. We are grateful to the following persons for assistance with field work and our Peperomia research in general: Joaquina Albán, Pieter Asselman, Carlos Bambarén, Brian Bates, Stephan Beck, Nelson Cieza, Hilda Flores, Paul Goetghebeur, Esteban Martínez, Robert Maijer, Guido Mathieu, Victor Morales, Helga Ochotorena and Guillermo Pino.
PY - 2011
Y1 - 2011
N2 - Background: The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae), one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools. Results: We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer) provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia. Conclusions: Single (or very low) copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of taxonomic levels from family down to population level. As more plant genomes are sequenced, we will obtain increasingly precise information about which genes return to single copy most rapidly following gene duplication and may be most useful across a wide range of plant groups.
AB - Background: The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae), one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools. Results: We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer) provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia. Conclusions: Single (or very low) copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of taxonomic levels from family down to population level. As more plant genomes are sequenced, we will obtain increasingly precise information about which genes return to single copy most rapidly following gene duplication and may be most useful across a wide range of plant groups.
UR - http://www.scopus.com/inward/record.url?scp=83155178505&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=83155178505&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-11-357
DO - 10.1186/1471-2148-11-357
M3 - Article
C2 - 22151585
AN - SCOPUS:83155178505
SN - 1471-2148
VL - 11
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 357
ER -