Chemical energy to mechanical motion through catalysis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have demonstrated that one can build nanomotors "from scratch" that mimic biological motors by using catalytic reactions to create forces based on chemical gradients. These motors are autonomous in that they do not require external electric, magnetic, or optical fields as energy sources. Instead, the input energy is supplied locally and chemically. Depending on the shape of the object and the placement of the catalyst, different kinds of motion can be achieved. Additionally, an object that moves by generating a continuous surface force in a fluid can, in principle, be used to pump the fluid by the same catalytic mechanism. Thus, by immobilizing these nanomotors, it is possible to developed micro/nanofluidic pumps that transduce energy catalytically.

Original languageEnglish (US)
Title of host publicationTechnical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008
Pages270-272
Number of pages3
StatePublished - 2008
Event2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008 - Quebec City, QC, United States
Duration: Jun 1 2008Jun 5 2008

Publication series

NameTechnical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, NSTI-Nanotech, Nanotechnology 2008
Volume1

Other

Other2008 NSTI Nanotechnology Conference and Trade Show, NSTI Nanotech 2008 Joint Meeting, Nanotechnology 2008
Country/TerritoryUnited States
CityQuebec City, QC
Period6/1/086/5/08

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Chemical energy to mechanical motion through catalysis'. Together they form a unique fingerprint.

Cite this