Abstract
Ag nanocubes (AgNCs) are predominantly synthesized by the polyol method, where the solvent (ethylene glycol) is considered the reducing agent and poly(N-vinylpyrrolidone) (PVP) the shape-directing agent. An experimental phase diagram for the formation of Ag nanocubes as a function of PVP monomer concentration (Cm) and molecular weight (Mw) demonstrated end groups of PVP impact the final Ag product. Measured rates of the initial Ag+ reduction at different PVP Cm and Mw confirmed the reducing effect originates from end-groups. PVP with well-defined aldehyde and hydroxyl end groups lead to the formation of Ag nanocubes and nanowires respectively, indicating the faster reducing agent formed kinetically preferred nanowires. We demonstrate PVP end-groups induce initial reduction of Ag+ to form seeds followed by autocatalytic reduction of Ag+ by ethylene glycol (and not solvent oxidation products) to form Ag nanostructures. The current study enabled a quantitative description of the role of PVP in nanoparticle shape-control and demonstrates a unique opportunity to design nanostructures by combining nanoparticle synthesis with polymer design to introduce specific physicochemical properties.
Original language | English (US) |
---|---|
Pages (from-to) | 184-195 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 143 |
Issue number | 1 |
DOIs | |
State | Published - Jan 13 2021 |
All Science Journal Classification (ASJC) codes
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry