TY - JOUR
T1 - Chloride channel ClC-2 is a key factor in the development of DSS-induced murine colitis
AU - Nighot, Prashant
AU - Young, Karen
AU - Nighot, Meghali
AU - Rawat, Manmeet
AU - Sung, Eui J.
AU - Maharshak, Nitsan
AU - Plevy, Scott E.
AU - Ma, Thomas
AU - Blikslager, Anthony
PY - 2013/12
Y1 - 2013/12
N2 - Background: Previously, it was shown that the chloride channel ClC-2 modulates intestinal tight junction (TJ) barrier function. The aim of the present study was to investigate the role of ClC-2 in epithelial barrier function and recovery in the event of epithelial injury. Methods: The role of ClC-2 was investigated in TJ barrier function in dextran sodium sulfate (DSS)-induced colitis in ClC-2 knockout mice and ClC-2 knockdown intestinal Caco-2 cells. Barrier function was measured electrophysiologically and by transepithelial mannitol fluxes. Selected TJ and associated proteins were Western blotted, cytokines were measured using quantitative PCR, and human colonic biopsies were examined with immunohistochemistry. Results: ClC-2-/- mice had a higher disease activity index, higher histological scores, and increased paracellular permeability compared with wild-type mice when treated with DSS. DSS-treated ClC-2-/- mice had increased claudin-2 expression, greater loss of occludin in the membrane, increased association of occludin with caveolin-1, and significantly increased tumor necrosis factor-a and interleukin-1β messenger RNA. ClC-2 knockdown in human intestinal Caco-2 cells resulted in a greater loss of epithelial resistance in the event of epithelial injury. The restoration of colonic barrier function after DSS colitis was delayed in ClC-2-/- mice. In human colonic biopsies, the protein and messenger RNA expression of ClC-2 was found to be reduced in patients with ulcerative colitis. Conclusions: ClC-2 plays a critical role in experimental colitis in that its absence increases disease activity, reduces barrier function and recovery, and perturbs TJs. Furthermore, ClC-2 expression is markedly reduced in the colon of human patients with ulcerative colitis.
AB - Background: Previously, it was shown that the chloride channel ClC-2 modulates intestinal tight junction (TJ) barrier function. The aim of the present study was to investigate the role of ClC-2 in epithelial barrier function and recovery in the event of epithelial injury. Methods: The role of ClC-2 was investigated in TJ barrier function in dextran sodium sulfate (DSS)-induced colitis in ClC-2 knockout mice and ClC-2 knockdown intestinal Caco-2 cells. Barrier function was measured electrophysiologically and by transepithelial mannitol fluxes. Selected TJ and associated proteins were Western blotted, cytokines were measured using quantitative PCR, and human colonic biopsies were examined with immunohistochemistry. Results: ClC-2-/- mice had a higher disease activity index, higher histological scores, and increased paracellular permeability compared with wild-type mice when treated with DSS. DSS-treated ClC-2-/- mice had increased claudin-2 expression, greater loss of occludin in the membrane, increased association of occludin with caveolin-1, and significantly increased tumor necrosis factor-a and interleukin-1β messenger RNA. ClC-2 knockdown in human intestinal Caco-2 cells resulted in a greater loss of epithelial resistance in the event of epithelial injury. The restoration of colonic barrier function after DSS colitis was delayed in ClC-2-/- mice. In human colonic biopsies, the protein and messenger RNA expression of ClC-2 was found to be reduced in patients with ulcerative colitis. Conclusions: ClC-2 plays a critical role in experimental colitis in that its absence increases disease activity, reduces barrier function and recovery, and perturbs TJs. Furthermore, ClC-2 expression is markedly reduced in the colon of human patients with ulcerative colitis.
UR - http://www.scopus.com/inward/record.url?scp=84893754965&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893754965&partnerID=8YFLogxK
U2 - 10.1097/MIB.0b013e3182a82ae9
DO - 10.1097/MIB.0b013e3182a82ae9
M3 - Article
C2 - 24030525
AN - SCOPUS:84893754965
SN - 1078-0998
VL - 19
SP - 2867
EP - 2877
JO - Inflammatory bowel diseases
JF - Inflammatory bowel diseases
IS - 13
ER -