TY - JOUR
T1 - Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention
AU - Matchock, Robert L.
AU - Toby Mordkoff, J.
PY - 2009/1
Y1 - 2009/1
N2 - Recent research on attention has identified three separable components, known as alerting, orienting, and executive functioning, which are thought to be subserved by distinct neural networks. Despite systematic investigation into their relatedness to each other and to psychopathology, little is known about how these three networks might be modulated by such factors as time-of-day and chronotype. The present study administered the Attentional Network Test (ANT) and a self-report measure of alertness to 80 participants at 0800, 1200, 1600, and 2000 hours on the same day. Participants were also chronotyped with a morningness/eveningness questionnaire and divided into evening versus morning/neither-type groups; morning chronotypes tend to perform better early in the day, while evening chronotypes show enhanced performance later in the day. The results replicated the lack of any correlations between alerting, orienting, and executive functioning, supporting the independence of these three networks. There was an effect of time-of-day on executive functioning with higher conflict scores at 1200 and 1600 hours for both chronotypes. The efficiency of the orienting system did not change as a function of time-of-day or chronotype. The alerting measure, however, showed an interaction between time-of-day and chronotype such that alerting scores increased only for the morning/neither-type participants in the latter half of the day. There was also an interaction between time-of-day and chronotype for self-reported alertness, such that it increased during the first half of the day for all participants, but then decreased for morning/neither types (only) toward evening. This is the first report to examine changes in the trinity of attentional networks measured by the ANT throughout a normal day in a large group of normal participants, and it encourages more integration between chronobiology and cognitive neuroscience for both theoretical and practical reasons.
AB - Recent research on attention has identified three separable components, known as alerting, orienting, and executive functioning, which are thought to be subserved by distinct neural networks. Despite systematic investigation into their relatedness to each other and to psychopathology, little is known about how these three networks might be modulated by such factors as time-of-day and chronotype. The present study administered the Attentional Network Test (ANT) and a self-report measure of alertness to 80 participants at 0800, 1200, 1600, and 2000 hours on the same day. Participants were also chronotyped with a morningness/eveningness questionnaire and divided into evening versus morning/neither-type groups; morning chronotypes tend to perform better early in the day, while evening chronotypes show enhanced performance later in the day. The results replicated the lack of any correlations between alerting, orienting, and executive functioning, supporting the independence of these three networks. There was an effect of time-of-day on executive functioning with higher conflict scores at 1200 and 1600 hours for both chronotypes. The efficiency of the orienting system did not change as a function of time-of-day or chronotype. The alerting measure, however, showed an interaction between time-of-day and chronotype such that alerting scores increased only for the morning/neither-type participants in the latter half of the day. There was also an interaction between time-of-day and chronotype for self-reported alertness, such that it increased during the first half of the day for all participants, but then decreased for morning/neither types (only) toward evening. This is the first report to examine changes in the trinity of attentional networks measured by the ANT throughout a normal day in a large group of normal participants, and it encourages more integration between chronobiology and cognitive neuroscience for both theoretical and practical reasons.
UR - http://www.scopus.com/inward/record.url?scp=56349135792&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=56349135792&partnerID=8YFLogxK
U2 - 10.1007/s00221-008-1567-6
DO - 10.1007/s00221-008-1567-6
M3 - Article
C2 - 18810396
AN - SCOPUS:56349135792
SN - 0014-4819
VL - 192
SP - 189
EP - 198
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 2
ER -