TY - JOUR
T1 - Citrate-Based Fluorescent Biomaterials
AU - Shan, Dingying
AU - Hsieh, Jer Tsong
AU - Bai, Xiaochun
AU - Yang, Jian
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/9/19
Y1 - 2018/9/19
N2 - Fluorescence imaging has emerged as a promising technique for monitoring and assessing various biologically relevant species in cells and organisms, driving the demand for effective fluorescent agents with good biocompatibility and high fluorescence performance. However, traditional fluorescent agents, such as quantum dots (QDs) and organic dyes, either suffer from toxicity concerns or poor fluorescence performance (e.g., low photobleaching-resistance). In this regard, citrate-based fluorescent biomaterials, which are synthesized from the natural and biocompatible precursor of citric acid (CA), have become competitive alternatives for fluorescence imaging owing to their biocompatibility, cost effectiveness, straightforward synthetic routes, flexible designability, as well as strong fluorescence with adjustable excitation/emission wavelengths. Accordingly, numerous citrate-based biomaterials, including carbon dots (CDs), biodegradable photoluminescent polymers (BPLPs), and small molecular fluorophores, have been developed and researched in the past few decades. This review discusses recent progress in the research and development of citrate-based fluorescent materials with emphasis on their design and synthesis considerations, material properties, fluorescence properties and mechanisms, as well as biomedical applications. It is expected that this review will provide an insightful discussion on the citrate-based fluorescent biomaterials, and lead to innovations for the next generation of fluorescent biomaterials and fluorescence-based biomedical technology.
AB - Fluorescence imaging has emerged as a promising technique for monitoring and assessing various biologically relevant species in cells and organisms, driving the demand for effective fluorescent agents with good biocompatibility and high fluorescence performance. However, traditional fluorescent agents, such as quantum dots (QDs) and organic dyes, either suffer from toxicity concerns or poor fluorescence performance (e.g., low photobleaching-resistance). In this regard, citrate-based fluorescent biomaterials, which are synthesized from the natural and biocompatible precursor of citric acid (CA), have become competitive alternatives for fluorescence imaging owing to their biocompatibility, cost effectiveness, straightforward synthetic routes, flexible designability, as well as strong fluorescence with adjustable excitation/emission wavelengths. Accordingly, numerous citrate-based biomaterials, including carbon dots (CDs), biodegradable photoluminescent polymers (BPLPs), and small molecular fluorophores, have been developed and researched in the past few decades. This review discusses recent progress in the research and development of citrate-based fluorescent materials with emphasis on their design and synthesis considerations, material properties, fluorescence properties and mechanisms, as well as biomedical applications. It is expected that this review will provide an insightful discussion on the citrate-based fluorescent biomaterials, and lead to innovations for the next generation of fluorescent biomaterials and fluorescence-based biomedical technology.
UR - http://www.scopus.com/inward/record.url?scp=85053481371&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85053481371&partnerID=8YFLogxK
U2 - 10.1002/adhm.201800532
DO - 10.1002/adhm.201800532
M3 - Review article
C2 - 30047618
AN - SCOPUS:85053481371
SN - 2192-2640
VL - 7
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 18
M1 - 1800532
ER -