TY - GEN
T1 - Classification and modeling of human activities using empirical mode decomposition with S-band and millimeter-wave micro-Doppler radars
AU - Fairchild, Dustin P.
AU - Narayanan, Ram M.
PY - 2012
Y1 - 2012
N2 - The ability to identify human movements can be an important tool in many different applications such as surveillance, military combat situations, search and rescue operations, and patient monitoring in hospitals. This information can provide soldiers, security personnel, and search and rescue workers with critical knowledge that can be used to potentially save lives and/or avoid a dangerous situation. Most research involving human activity recognition is focused on using the Short-Time Fourier Transform (STFT) as a method of analyzing the micro-Doppler signatures. Because of the time-frequency resolution limitations of the STFT and because Fourier transform-based methods are not well-suited for use with non-stationary and nonlinear signals, we have chosen a different approach. Empirical Mode Decomposition (EMD) has been shown to be a valuable time-frequency method for processing non-stationary and nonlinear data such as micro-Doppler signatures and EMD readily provides a feature vector that can be utilized for classification. For classification, the method of a Support Vector Machine (SVMs) was chosen. SVMs have been widely used as a method of pattern recognition due to their ability to generalize well and also because of their moderately simple implementation. In this paper, we discuss the ability of these methods to accurately identify human movements based on their micro-Doppler signatures obtained from S-band and millimeter-wave radar systems. Comparisons will also be made based on experimental results from each of these radar systems. Furthermore, we will present simulations of micro-Doppler movements for stationary subjects that will enable us to compare our experimental Doppler data to what we would expect from an "ideal" movement.
AB - The ability to identify human movements can be an important tool in many different applications such as surveillance, military combat situations, search and rescue operations, and patient monitoring in hospitals. This information can provide soldiers, security personnel, and search and rescue workers with critical knowledge that can be used to potentially save lives and/or avoid a dangerous situation. Most research involving human activity recognition is focused on using the Short-Time Fourier Transform (STFT) as a method of analyzing the micro-Doppler signatures. Because of the time-frequency resolution limitations of the STFT and because Fourier transform-based methods are not well-suited for use with non-stationary and nonlinear signals, we have chosen a different approach. Empirical Mode Decomposition (EMD) has been shown to be a valuable time-frequency method for processing non-stationary and nonlinear data such as micro-Doppler signatures and EMD readily provides a feature vector that can be utilized for classification. For classification, the method of a Support Vector Machine (SVMs) was chosen. SVMs have been widely used as a method of pattern recognition due to their ability to generalize well and also because of their moderately simple implementation. In this paper, we discuss the ability of these methods to accurately identify human movements based on their micro-Doppler signatures obtained from S-band and millimeter-wave radar systems. Comparisons will also be made based on experimental results from each of these radar systems. Furthermore, we will present simulations of micro-Doppler movements for stationary subjects that will enable us to compare our experimental Doppler data to what we would expect from an "ideal" movement.
UR - http://www.scopus.com/inward/record.url?scp=84874880582&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874880582&partnerID=8YFLogxK
U2 - 10.1117/12.922448
DO - 10.1117/12.922448
M3 - Conference contribution
AN - SCOPUS:84874880582
SN - 9780819490391
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Radar Sensor Technology XVI
T2 - Radar Sensor Technology XVI
Y2 - 23 April 2012 through 25 April 2012
ER -