Classification of Impact Echo Signals Using Explainable Deep Learning and Transfer Learning Approaches

Rahul Torlapati, Hoda Azari, Parisa Shokouhi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Impact echo (IE) is one of the most frequently used nondestructive evaluation (NDE) techniques for detecting subsurface defects such as delamination, honeycombing, and voids in concrete structures. In the conventional analysis of IE data, the time-domain signal is transformed into the frequency domain and the frequency content is used to estimate the presence and nature of the defect. Machine learning (ML) has been recently applied to the IE signal classification problem. However, because of the scarcity of labeled IE datasets, most existing work relies on relatively small training and test datasets without addressing the generalizability and transferability of the developed models. In this paper, we compare two approaches for automatic classification of IE signals: clustering based on expert-crafted features and deep learning (DL) from automatically extracted features. Next, we use the knowledge gained from a DL model trained on concrete specimens with available ground truth to make predictions about defects in a different specimen with completely different construction and characteristics (transfer learning). Finally, we examine our DL model to gain insights into the model working (explainability) and highlight the attributions that are significant in classifying a particular IE signal. Our findings demonstrate the utility of ML and DL for IE signal classification, but also highlight the need for high-quality labeled datasets for advancing ML and DL in NDE data analysis.

Original languageEnglish (US)
Pages (from-to)464-477
Number of pages14
JournalTransportation Research Record
Volume2677
Issue number9
DOIs
StatePublished - Sep 2023

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Mechanical Engineering

Cite this